Горит ли огонь в космосе? фото, видео эксперимента

Горит ли огонь в космосе? фото, видео эксперимента

Движение Луны и земное притяжение

Из истории открытия закона известно, что Исаак Ньютон в своём исследовании опирался на движение Луны вокруг Земли. Связав силу тяжести, вынуждающую все незакреплённые объекты падать вниз, и неизвестную к тому моменту силу, удерживающую Луну на её орбите, учёный понял, что это одно и то же явление. Если бы притяжение не действовало на спутник, то он давным-давно свернул бы со своей наблюдаемой траектории и пролетел по касательной к ней в глубины космоса.

движение луны по орбите

Такое утверждение легко доказать на схематическом рисунке, приведённом выше. Пусть  – начальное положение Луны. Если бы на неё не действовала центростремительная сила, исходящая от Земли, то через некоторый промежуток времени спутник бы занял положение , однако наблюдение показывает, что небесное тело при движении приходит в точку , а после в  и так далее, что доказывает наличие притяжения.

Выводом своего закона Ньютон показал зависимость земного тяготения от квадрата расстояния. Так, на поверхности нашей планеты камень обладает ускорением свободного падения  м/с. Если же этот самый камень поместить на орбиту Луны, то он будет падать на Землю с ускорением  м/с.

Ценные данные для пожарной безопасности на Земле

Хотя целью SoFIE является изучение пожарной безопасности космического корабля, данные экспериментов способны помочь улучшить пожарную безопасность на Земле. Они дополнят существующую совокупность знаний, которые могут улучшить скрининговые тесты для оценки пожаробезопасных материалов для дома, офиса, самолета и других целей.  

NASA планирует завершить SoFIE до ноября 2025 года. В это время космическое агентство может принимать предложения о дополнительных экспериментах в рамках проекта. Отдел биологических и физических наук Управления научной миссии NASA обеспечивает финансирование SoFIE и связанных с ним исследований.

Напомним, что ранее ракета компании ABL Space Systems взорвалась во время наземных испытаний.

Только самые интересные новости и факты в нашем Telegram-канале!

Присоединяйтесь: https://t.me/ustmagazine

1. Основные термины

Механические явления — это явления, происходящие с физическими телами при их движении относительно друг друга (обращение Земли вокруг Солнца, движение автомобилей, качание маятника).

Тепловые явления — это явления, связанные с нагреванием и охлаждением физических тел (кипение чайника, образование тумана, превращение воды в лед).

Электрические явления — это явления, возникающие при появлении, существовании, движении и взаимодействии электрических зарядов (электрический ток, молния).

Показать, как происходят явления на Земле — легко, но как можно продемонстрировать те же явления в невесомости? Для этого я решила использовать фрагменты из серии фильмов «Уроки из космоса». Это очень интересные фильмы, отснятые в свое время еще на орбитальной станции «Мир». Настоящие уроки из космоса ведет летчик-космонавт, герой России Александр Серебров.

Но, к сожалению, мало кто знает про эти фильмы, поэтому еще одной из задач создания проекта была популяризация «Уроков из космоса», созданных при участии ВАКО «Союз», РКК «Энергия», РНПО «Росучприбор».

В невесомости многие явления происходят не так как на Земле. Причин этому — три. Первая: не проявляется действие силы тяжести. Можно говорить о том, что она компенсируется действием силы инерции. Второе: в невесомости не действует Архимедова сила, хотя и там закон Архимеда выполняется. И третье: очень важную роль в невесомости начинают играть силы поверхностного натяжения.

Но и в невесомости работают единые физические законы природы, которые верны как для Земли, так и для всей Вселенной.

Состояние полного отсутствия веса называется невесомостью. Невесомость, или отсутствие веса у предмета наблюдается в том случае, когда в силу каких-либо причин исчезает сила притяжения между этим предметом и опорой, или когда исчезает сама опора. простейший пример возникновения невесомости — свободное падение внутри замкнутого пространства, то есть в отсутствии воздействия силы сопротивления воздуха. Скажем падающий самолет сам по себе притягивается землей, но вот в его салоне возникает состояние невесомости, все тела тоже падают с ускорение в одну g, но это не ощущается — ведь сопротивления воздуха нет. Невесомость наблюдается в космосе, когда тело движется по орбите вокруг какого-нибудь массивного тела, планеты. Такое круговое движение можно рассматривать как постоянное падение на планету, которое не происходит благодаря круговому вращению по орбите, а сопротивление атмосферы также отсутствует. Мало того, сама Земля постоянно вращаясь по орбите падает и никак не может упасть на солнце и если бы мы не ощущали притяжение от самой планеты, мы оказались бы в невесомости относительно притяжения солнца.

Часть явлений в космосе протекает точно так же как и на Земле. Для современных технологий невесомость и вакуум не являются помехой… и даже наоборот — это предпочтительно. На Земле нельзя достичь таких высоких степеней вакуума, как в межзвездном пространстве. Вакуум нужен для защиты обрабатываемых металлов от окисления, а металлы не расплавляются, вакуум не вызывает помех движению тел.

Самовозгорание

Некоторые вещества обладают способностью адсорбировать газы и кислород воздуха, вследствие чего увеличивается скорость окислительных реакций и повышается температура этих веществ. Если при этом создаются условия, когда приход тепла будет больше отдачи в окружающую среду, то в результате непрерывного повышения температуры такие вещества могут гореть. Процесс, при котором горение (веществ происходит в результате самонагревания, называется самовозгоранием. Ясно, что вещества, у которых процесс самовозгорания начинается при низкой температуре, представляют повышенную пожарную опасность.

Вещества, способные к самовозгоранию, разделяют на несколько групп. К I группе относятся вещества растительного происхождения, например влажное зерно, сено, опилки. Причиной повышения температуры для них являются биологические процессы; в дальнейшем повышение температуры происходит вследствие окисления, что приводит к самовозгоранию таких веществ.

Ко II группе относят каменные и бурые углы (кроме тощих углей) и торф. Самовозгоранию торфа способствуют протекающие в нем биологические процессы. Торф самовозгорается при относительно невысокой температуре (120- 140°С).

К III группе относятся масла и жиры, причем повышенную пожарную опасность представляют масла растительного происхождения (льняное масло и др.), так как они содержат непредельные органические соединения, которые могут окисляться и полимеризоваться. Животные и минеральные масла представляют значительно меньшую пожарную опасность.

Опасность самовозгорания резко возрастает в тех случаях, когда масла попадают на обтирочные материалы и на спецодежду. Образующаяся на поверхности этих материалов пленка масла адсорбирует кислород воздуха, вследствие чего происходит повышение температуры, возможно воспламенение материалов. В практике металлургических заводов известны случаи пожаров из-за самовозгорания замасленных обтирочных материалов и спецодежды.

К IV группе относятся химические вещества и некоторые соединения. К этой группе относятся вещества, способные к самовозгоранию при их контакте с воздухом, например фосфористый водород, кремниевый водород, белый фосфор, арсины, пыль алюминия и цинка, свежеприготовленные древесный уголь и сажа, металлоорганические соединения. Сульфиды железа FeS и Fe2S3 обладают пирофорными свойствами. При соприкосновении этих сульфидов с воздухом температура их повышается настолько высоко, что является источником воспламенения горючих веществ.

Ряд веществ воспламеняется при соприкосновении с водой, например щелочные металлы, карбиды кальция и щелочных металлов и др. Воспламенение возникает от того, что в результате взаимодействия этих веществ с водой образуются горючие газы, которые воспламеняются вследствие экзотермичности реакций. В сжатом кислороде самовозгораются масла и жиры.

Закон всемирного тяготения

Начнем с самого простого. Если нет ветра, капли дождя падают вертикально вниз на землю. Когда мы отпустим камень из руки, то он тоже упадет на землю.

Если пнуть мяч, то он не полетит в прямом направлении вечно. Его траекторией будет кривая линия (рисунок 1). В конце движения он все равно окажется на земле.

Рисунок 1. Траектория полета мяча

Искусственные спутники запускают вверх, но они не улетают по прямой в неизведанные космические пространства. Они движутся вокруг Земли.

Все эти тела участвуют в некотором взаимодействии, на них действует сила — сила притяжения к Земле. 

К Земле притягивается все, что на ней находится: люди, океаны, наша атмосфера, дома, животные.

Кроме этого, можно сказать, что она притягивает все тела — например, Луну, Солнце, другие небесные объекты. Но взаимодействие не бывает односторонним, значит, и Земля притягивается ко всем этим телам.

Рассмотрим Луну и Землю. Взаимодействие этих небесных тел (их взаимное притяжение) вызывает приливы и отливы вод на Земле (рисунок 2). Дважды в сутки огромные массы воды поднимаются и опускаются по всей планете.

Рисунок 2. Притяжение Земли и Луны

Вся наша Солнечная система взаимодействует подобным образом. Планеты притягиваются к Солнцу и друг к другу (рисунок 3).

Рисунок 3. Солнечная система и время оборота планет вокруг солнца

Итак,

Закон всемирного тяготения

В 1682 году Исаак Ньютон открыл закон всемирного тяготения. Он звучит так: все тела притягиваются друг к другу, сила всемирного тяготения прямо пропорциональна произведению масс тел и обратно пропорциональна квадрату расстояния между ними.

Формула силы тяготения согласно этому закону выглядит так:

Закон всемирного тяготения

F — сила тяготения

M — масса первого тела (часто планеты)

m — масса второго тела

R — расстояние между телами

G — гравитационная постоянная

G = 6,67 · 10−11м3 · кг−1 · с−2

Когда мы встаем на весы, стрелка отклоняется. Это происходит потому, что масса Земли очень большая, и сила тяготения буквально придавливает нас к поверхности. На более легкой Луне человек весит меньше примерно в шесть раз.

Закон всемирного тяготения используют, чтобы вычислить силы взаимодействия между телами любой формы, если размеры тел значительно меньше расстояния между ними.

Если мы возьмем два шара, то для них можно использовать этот закон вне зависимости от расстояния между ними. За расстояние R между телами в этом случае принимается расстояние между центрами шаров.

Задачка раз

Две планеты с одинаковыми массами обращаются по круговым орбитам вокруг звезды. У первой из них радиус орбиты вдвое больше, чем у второй. Каково отношение сил притяжения первой и второй планеты к звезде?

Решение

По закону всемирного тяготения сила притяжения планеты к звезде обратно пропорциональна квадрату радиуса орбиты. Таким образом, в силу равенства масс отношение сил притяжения к звезде первой и второй планет обратно пропорционально отношению квадратов радиусов орбит:

По условию, у первой планеты радиус орбиты вдвое больше, чем у второй, то есть R1 = 2R2.

Это значит, что:

Ответ: отношение сил притяжения первой и второй планет к звезде равно 0,25.

Онлайн-уроки физики в Skysmart не менее увлекательны, чем наши статьи!

Задачка два

У поверхности Луны на космонавта действует сила тяготения 144 Н. Какая сила тяготения действует со стороны Луны на того же космонавта в космическом корабле, движущемся по круговой орбите вокруг Луны на расстоянии трех лунных радиусов от ее центра?

Решение

По закону всемирного тяготения сила притяжения космонавта со стороны Луны обратно пропорциональна квадрату расстояния между ним и центром Луны. У поверхности Луны это расстояние совпадает с радиусом спутника. На космическом корабле, по условию, оно в три раза больше. Таким образом, сила тяготения со стороны Луны, действующая на космонавта на космическом корабле, в 9 раз меньше, чем у поверхности Луны, то есть:

144 : 9 = 16 Н

Ответ: на расстоянии трех лунных радиусов от центра сила притяжения космонавта будет равна 16 Н.

Важный нюанс!
Правильно говорить не «на тело действует сила тяготения», а «Земля притягивает тело с силой тяготения».

Цвет пламени [ править | править код ]

Цвет пламени определяется излучением электронных переходов (например, тепловым излучением) различных возбужденных (как заряженных, так и незаряженных) частиц, образующихся в результате химической реакции между молекулами горючего и кислородом воздуха, а также в результате термической диссоциации. В частности, при горении углеродного горючего в воздухе, синяя часть цвета пламени обусловлена излучением частиц CN ±n , красно-оранжевая — излучением частиц С2 ±n и микрочастиц сажи. Излучение прочих образующихся в процессе горения частиц (CHx ±n , H2O ±n , HO ±n , CO2 ±n , CO ±n ) и основных газов (N2, O2, Ar) лежит в невидимой для человеческого глаза УФ и ИК части спектра. Кроме того, на окраску пламени сильно влияет присутствие в самом топливе, деталях конструкции горелок, сопел и так далее соединений различных металлов, в первую очередь натрия. В видимой части спектра излучение натрия крайне интенсивно и ответственно за оранжево-желтый цвет пламени, при этом излучение чуть менее распространенного калия оказывается на его фоне практически не различимым (поскольку большинство организмов имеют в составе клеток K+/Na+ каналы, то в углеродном горючем растительного или животного происхождения на 3 атома натрия приходится в среднем 2 атома калия).

Возможна ли искусственная гравитация

Когда человек оказывается в космосе, далеко от гравитационных воздействий, испытываемых на поверхности Земли, он переживает невесомость. Хотя все массы Вселенной продолжат притягивать его, они продолжат притягивать и космический корабль, поэтому человек как бы «плавает» внутри него. В связи с этим возникает вопрос — как создать условия искусственной гравитации, при которых человек сможет не летать, а спокойно ходить по космическому кораблю?

Пока нужный эффект можно получить только через ускорение. В случае с космическим кораблем — заставить его вращаться. Тогда можно можно получить центробежную тягу, как на Земле. Но для путешествия в другую звездную систему придется ускорять корабль по пути туда и замедлять по прибытии обратно. Человеческий организм вряд ли сможет перенести такие нагрузки. Например, чтобы разогнаться до «импульсной скорости» как в фильме «Звездный путь», до нескольких процентов от скорости света, то пришлось бы выдержать ускорение в 4000 g (единиц ускорения, вызванного гравитацией) в течение часа. Это в 100 раз больше ускорения, которое предотвращает ток крови в теле человека. В Роскосмосе изучают идею встроенной центрифуги на борту корабля, в которую космонавты смогут периодически заходить, чтобы испытывать силу тяжести и снижать негативные последствия от пребывания в невесомости.

Кадр из фильма «Звездный путь»

(Фото: YouTube)

Предполагалось, что искусственная гравитация возможна при отрицательной гравитационной массе, которая, как ожидалось, свойственна антиматерии. Однако Европейская организация по ядерным исследованиям (ЦЕРН) обнаружила, что инертная масса антипротона («зеркального отражения» протона, который отличается знаками всех характеристик физического взаимодействия) совпадает с массой протона. Если бы гравитация действовала на антипротоны как-то иначе, то физики заметили бы разницу. Получается, что действие гравитации на антипротоны и протоны совпадает. Кроме того, в ЦЕРН получили антиводород — первую стабильную форму антиматерии. Но ее изучают, и пока сдвигов в теории антиматерии нет.

В боевых условиях

Единственный настоящий пожар в невесомости произошел 23 февраля 1997 года на станции «Мир» — загорелась шашка регенерации кислорода.

Шашки регенерации, фото NASA

Обгоревшая шашка

Огонь горел примерно 90 секунд, не нанес критических повреждений, но большие проблемы доставило задымление — не было понятно, насколько безопасно находиться на станции. Космонавты сначала надели изолирующие противогазы, но у них был ограничен ресурс, и вскоре пришлось рискнуть и снова начать дышать воздухом станции. Уже потом на земле сожгли десятки шашек из этой партии, но не смогли повторить проблему, похоже, к пожару привел единичный дефект.

Об аварии был снят очень неплохой фильм.

https://youtube.com/watch?v=PiCx%2520

Физика 9 кл. Термоядерная реакция

Подробности
Обновлено 18.06.2019 18:22
Просмотров: 368

1. Какая реакция называется термоядерной? Термоядерной называется реакция слияния лёгких ядер (таких как водород, гелий и др.), происходящая при температурах от десятков до сотен миллионов градусов.2. Почему протекание термоядерных реакций возможно только при очень высоких температурах?
Создание высокой температуры необходимо для придания ядрам достаточно большой кинетической энергии.
Только при этом условии ядра смогут преодолеть силы электрического отталкивания и сблизиться настолько, чтобы попасть в зону действия ядерных сил.
На таких малых расстояниях силы ядерного притяжения значительно превосходят силы электрического отталкивания, благодаря чему возможен синтез (слияние) ядер. 3. Какая реакция энергетически более выгодна (в расчете на один нуклон): синтез легких ядер или деление тяжелых?
При делении тяжёлых ядер может выделяться энергия.
В случае с лёгкими ядрами энергия может выделяться при обратном процессе — при их синтезе.
Причём реакция синтеза лёгких ядер энергетически более выгодна, чем реакция деления тяжёлых, если сравнивать выделившуюся энергию, приходящуюся на один нуклон.

4. Приведите пример термоядерной реакции.
Примером термоядерной реакции может служить слияние изотопов водорода (дейтерия и трития), в результате чего образуется гелий и излучается нейтрон:
Это первая термоядерная реакция, которую учёным удалось осуществить.
Она была реализована в термоядерной бомбе и носила неуправляемый (взрывной) характер.5. В чем заключается одна из основных трудностей при осуществлении термоядерных реакций?
Одна из основных трудностей — это удержать внутри установки высокотемпературную плазму (почти полностью ионизированный газ), в которой и происходит синтез ядер.
Плазма не должна соприкасаться со стенками установки, в которой она находится, иначе стенки обратятся в пар.
В настоящее время для удерживания плазмы в ограниченном пространстве на соответствующем расстоянии от стенок применяются очень сильные магнитные поля. 6. Какова роль термоядерных реакций в существовании жизни на Земле?
В результате термоядерных реакций, протекающих на Солнце, выделяется энергия, необходимая для жизни на Земле.7. Какие гипотезы об источниках энергии Солнца вы знаете?
На счёт того, что является «топливом», за счёт которого на Солнце вырабатывается огромное количество энергии в течение столь длительного времени, существовали разные гипотезы:
а) Энергия на Солнце выделяется в результате химической реакции горения.
Но в этом случае, Солнце могло бы просуществовать всего несколько тысяч лет, что противоречит действительности.

б) В середине 19 в. считали, что увеличение внутренней энергии и соответствующее повышение температуры Солнца происходит за счёт уменьшения его потенциальной энергии при гравитационном сжатии.
Она тоже оказалась несостоятельной, так как в этом случае срок жизни Солнца увеличивается до миллионов лет, но не до миллиардов.8. Что является источником энергии Солнца по современным представлениям?
Предположение о том, что выделение энергии на Солнце происходит в результате протекания на нём термоядерных реакций, было высказано в 1939 г. американским физиком Хансом Бете.

Им был предложен водородный цикл, т. е. цепочка из трёх термоядерных реакций, приводящая к образованию гелия из водорода:

где — частица, называемая «нейтрино», что в переводе с итальянского означает «маленький нейтрон».

Чтобы получились два ядра , необходимые для третьей реакции, первые две должны произойти дважды.
9. На какой период должно хватить запаса водорода на Солнце по подсчетам ученых?

В соответствии с формулой Е = mс2 с уменьшением внутренней энергии тела уменьшается и его масса.
Масса Солнца ежесекундно уменьшается на несколько миллионов тонн.
Но, несмотря на потери, запасов водорода на Солнце должно хватить ещё на 5-6 миллиардов лет.

Следующая страница — смотреть

Назад в «Оглавление» — смотреть

Теория гравитации Эйнштейна

В 1798 году британский физик Генри Кавендиш провел один из первых в мире высокоточных экспериментов, чтобы попытаться точно определить значение G, гравитационной постоянной. Он построил так называемые крутильные весы, прикрепив два маленьких свинцовых шарика к концам балки, подвешенной горизонтально на тонкой проволоке. Рядом с каждым из шаров физик поместил большой сферический свинцовый груз. Маленькие свинцовые шарики гравитационно притягивались к тяжелым свинцовым гирям, в результате чего проволока слегка скручивалась. Это явление позволило ему рассчитать величину G.

Примечательно, что оценка Кавендиша для G всего на 1% отличалась от принятого на сегодняшний день значения 6,674 × 10^-11 м^3/кг^1 * с^2. Чтобы получить точное значение, ученые должны разработать невероятно чувствительное оборудование.

Немецко-американский физик Альберт Эйнштейн произвел следующую революцию в нашем понимании гравитации. Его общая теория относительности показала, что гравитация возникает из-за искривления пространства-времени, а это означает, что даже лучи света, которые должны следовать этой кривизне, преломляются чрезвычайно массивными объектами. В рамках его теории гравитация рассматривается не как сила, которая действует на тела, но как искривление пространства и времени под действием массы и энергии.

Теории Эйнштейна использовались для предположений о существовании черных дыр — небесных объектов с такой большой массой, что даже свет не может выйти из-под их поверхности. Вблизи черной дыры закон всемирного тяготения Ньютона уже не может точно описать, как движутся объекты.

Теория, которую Эйнштейн опубликовал в 1915 году, расширила его специальную теорию относительности, которую ученый разработал за десятилетие до этого. Специальная теория относительности утверждала, что пространство и время неразрывно связаны, но эта теория не признавала существование гравитации.

В своей специальной теории относительности Эйнштейн определил, что законы физики одинаковы для всех наблюдателей, не движущихся с ускорением, и показал, что скорость света в вакууме одинакова независимо от скорости, с которой движется наблюдатель. В результате он обнаружил, что пространство и время переплетаются, и события, происходящие в одно и то же время для одного наблюдателя, могут происходить в разное время для другого.

Разрабатывая уравнения своей общей теории относительности, Эйнштейн понял, что массивные объекты вызывают искажение пространства-времени. Представьте, что вы устанавливаете большой объект в центре батута. Объект вдавливался в ткань, вызывая появление ямочек. Если затем попытаться катить шарик по краю батута, он будет двигаться по спирали внутрь к этому объекту.

Вращение тяжелого объекта, такого как Земля, должно скручивать и искажать пространство-время вокруг него. В 2004 году NASA запустило гравитационный зонд Gravity Probe B. По данным агентства, оси точно откалиброванных гироскопов спутника с течением времени очень незначительно дрейфовали, что соответствует теории Эйнштейна.

Эйнштейн предсказал, что такие события, как столкновение двух черных дыр, создают рябь в пространстве-времени, известную как гравитационные волны. А в 2016 году Лазерная интерферометрическая гравитационно-волновая обсерватория (LIGO) объявила, что впервые определила такой сигнал. Гравитационная волна была вызвана столкновением двух черных дыр массой в 29 и 36 раз больше массы Солнца. После этого они слились в одну большую черную дыру. Это произошло, предположительно, 1,3 млрд лет назад.

Гравитационные волны, создаваемые двумя сталкивающимися черными дырами

(Фото: Р. Хёрт / Caltech-JPL)

С тех пор LIGO и ее европейский аналог Virgo обнаружили в общей сложности 50 гравитационно-волновых событий.

Гравитационное взаимодействие

Земля — это большой магнит. Причем на самом деле магнит, с настоящим магнитным полем. Но сейчас речь пойдет о другом явлении — явлении притяжения тел к Земле, от прыгающего с дерева котика до летящего мимо астероида. Называется это явление гравитацией.

Возьмем два тела — одно с большой массой, другое с маленькой. Натянем гигантское полотно ткани и положим на него тело с большей массой. После чего положим туда тело с массой поменьше. Мы будем наблюдать примерно такую картину:

Маленькое тело начнет притягиваться к тому, что больше, — это и есть гравитация. По сути, Земля — это большой шарик, а все остальные предметы — маленький (даже если это вовсе не шарики).

Гравитационное взаимодействие универсально. Оно справедливо для всех видов материи. Гравитация проявляется только в притяжении — отталкивание тел гравитация не предусматривает.

Из всех фундаментальных взаимодействий гравитационное — самое слабое. Хотя гравитация действует между всеми элементарными частицами, она настолько слаба, что ее принято не учитывать. Все дело в том, что гравитационное взаимодействие зависит от массы объекта, а у частиц она крайне мала. Эту зависимость впервые сформулировал Исаак Ньютон.

Полезные подарки для родителей
В колесе фортуны — гарантированные призы, которые помогут наладить учебный процесс и выстроить отношения с ребёнком!
Получить подарок!

Температура пламени [ править | править код ]

  • Температура воспламенения для большинства твёрдых материалов — 300 °С.
  • Температура пламени в горящей сигарете — 250–300 °С. [источник не указан 603 дня]
  • Температура пламени спички 750–1400 °С; при этом 300 °С — температура воспламенения дерева, а температура горения дерева равняется примерно 500–800 °С.
  • Температура горения пропан-бутана — 800–1970 °С.
  • Температура пламени керосина — 800 °С, в среде чистого кислорода — 2000 °С.
  • Температура горения бензина — 1300–1400 °С.
  • Температура пламени спирта не превышает 900 °С.
  • Температура горения магния — 2200 °С; значительная часть излучения в УФ-диапазоне.

Наиболее высокие известные температуры горения: дицианоацетилен C4N2 5’260 К (4’990 °C) в кислороде и до 6’000 К (5’730 °C) в озоне ; дициан (CN)2 4’525 °C в кислороде .

Так как вода обладает очень большой теплоёмкостью, отсутствие водорода в горючем исключает потери тепла на образование воды и позволяет развить бо́льшую температуру.

Взаимное притяжение молекул

Твёрдые предметы способны сохранять свою цельность. Это происходит благодаря наличию притяжения между мельчайшими частицами вещества — молекулами.

В жидкостях эта связь гораздо слабее, поэтому они способны течь. Это связано с тем, что здесь расстояния между частицами увеличиваются. У газов они ещё больше. Здесь силы притяжения из-за больших расстояний фактически не действуют, позволяя веществу расширяться и заполнять весь доступный объём. 

В наличии описанных сил легко убедиться, наблюдая физические явления реальной жизни.

Баланс различных сил, действующих между частицами, имеет важное значение в кристаллах. 

Здесь их результатом является образование кристаллической решётки, которая имеет повторяющуюся структуру. При этом молекулы и атомы находятся в строго определённых местах.

Если разделить кусок свинца на две части и отполировать получившийся разрез до блеска, то можно наблюдать необычный эффект. Если обе части прислонить друг к другу, то они прилипнут без всяких видимых причин. 

Если поднять одну часть, то другая поднимется вместе с ней. Такое соединение легко выдерживает вес до пяти килограммов. Физика объясняет, что в этом опыте демонстрируется притяжение, существующее между частицами.

Когда человек пытается разломать предмет, то он стремится преодолеть силы, которые притягивают частицы друг к другу. При этом видно, что одни предметы подвергаются воздействию легко, а строение других демонстрируют высокую прочность. Разница между ними состоит в том, что у них различная сила притяжения.

Понравилась статья? Поделиться с друзьями:
Like children
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: