Как читать таблицу Дмитрия Ивановича Менделеева
Ячейки химической базы данных разбиты в группы последовательностей по горизонтали и вертикали. Элементы имеют краткое обозначение из 1-3 букв (для формул и вычислений).
Группы
Представлены в виде столбцов таблицы. В системе старого образца их 8.
В настоящий же момент выделено 18.
Распределяют элементы в группы по однотипности: по строению атома они подобны друг другу. Также у представителей одного столбца схожая формула высшего оксида.
Традиционные типы столбцов делятся на подкатегории: А (с яркими признаками группы) и В (переходные металлы). Принадлежность зависит от положения символа (слева для A или справа для B):
Периоды
Горизонтальные цепочки в таблице, в которых элементы расположены по росту порядкового номера. В линии слева направо увеличиваются заряды ядра атомов.
Периодов всего 7:
-
1-й период содержит лишь гелий He2 и водород H1;
-
2 и 3 содержат по 8 компонентов;
-
4-й и 5-й содержат 18 единиц каждый;
-
6-й период вмещает 32 элемента;
-
7-й хранит 31 единицу и продолжает дополняться.
Физический смысл порядкового номера
Порядковый номер химического элемента также показывает, сколько в составе ядра атома протонов и сколько электронов вращается вокруг него.
Элементы таблицы Менделеева
Также есть класс «металлоподобных» полупроводников с неопределенным статусом. Отдельно располагаются благородные газы, не подверженные реакциям.
Часть элементов с номером более 100 открыта сравнительно недавно, их принадлежность к каким-либо группам только предположительна.
Щелочные и щелочноземельные элементы
Представители 1 (IA) и 2 (IIA) групп таблицы Менделеева — металлы со слабой устойчивостью и высокой степенью растворимости:
Щелочные металлы имеют серебристый отблеск, хорошо разламываются и режутся. Из всех размещенных в таблице металлов активнее других вступают в реакцию с молекулами других веществ, отдавая единственный свободный электрон. При контакте с водой создают гидроксиды – щелочи:
2Na + 2H20 = 2NaOH + H2
Щелочноземельные металлы более твердые и тугоплавкие, с бледно-серым оттенком. В их список входят:
Большая часть из них способна создавать щелочь, но не так легко расстается с двумя незанятыми электронами. Другие металлы они замещают, но перед щелочными бессильны и вытесняются ими из молекул.
Лантаноиды и актиноиды
Прежде получили название редкоземельных металлов из-за малого количества месторождений и трудностей в выводе чистого металла из соединений. Им соответствует 3 (III B) группа, хотя это иногда оспаривается.
В рамках семейства лантаноиды («скрытые») имеют схожую форму атома и внешние признаки, но различаются свойствами. Поодиночке почти не встречаются.
Актиноиды, помимо общих черт, радиоактивны. В природе, кроме, урана U 92, почти не встречаются, создаются искусственно.
Для удобства обе группы элементов выведены в 2 строки под общей таблицей.
Галогены и благородные газы
17 (VII A) группа состоит из галогенов:
В противоположность щелочам, эти неметаллы – самые сильные окислители, активно принимающие 8-й электрон к имеющимся семи для заполнения внешней оболочки.
Самый реактивный – фтор F 9 (способен разрушать молекулы воды):
2F2
+ 2H2O = 4HF + O2
3F2
+ 3H2O = OF2 + 4HF + H2O2
С ростом периода свойства элементов слабеют.
Все галогены токсичны, опасны для жизни, поражают дыхательные пути.
В последней, VIII A или 18 группе, находятся инертные газы:
Их внешний уровень электронов равен 8 (полностью заполнен), отчего они не способны вступать в реакцию с другими атомами. Крайне редко создают непрочные молекулы, распадающиеся при нагревании.
Переходные металлы
Представлены всеми подгруппами в традиционной системе или занимают с 3 по 12 столбцы в современных таблицах. Большинство обладает металлическим блеском, по цвету и состоянию различаются (большинство – твердые, но есть исключения, например, жидкая ртуть).
Могут отдавать разное количество электронов с нескольких оболочек для создания вещества (например, титан Ti 22 и железо Fe 26 способны отдавать от 2 до 4, медь Cu 29 – от 1 до 2, цинк Zn 30 – только 2, золото Au 79 и серебро Ag 47 практически не вступают в реакцию).
Металлоиды
Располагаются на стыке посреди легких металлов и неметаллов, в диагонали с 13 по 17 группах. В своем большинстве – полупроводники (хуже металлов проводят электрический ток).
Часть из них – металлы внешне, неметаллы по активности, часть – наоборот. Бор B 5, к примеру, является неметаллом с полупроводниковыми качествами.
Постпереходные металлы
Они же «легкие». От переходных аналогов отличаются меньшей твердостью и весом. Имеют иные температуры плавления и кипения. Для соединений отдают электроны только с внешней оболочки. Превосходят полуметаллы по восстановительности. Легкий металл выглядит как вещество с матовым оттенком вместо блеска.
Размещаются после переходных металлов под полупроводниками (в 13-17 столбцах или IIIA – VIIA). Алюминий Al 13 носит неопределенный статус (иногда причисляется к металлоидам).
Неметаллы
Располагаются в правом верхнем углу между полуметаллами и инертными газами (начала 13-17 групп). Имеют больше электронов на внешней оболочке, стремятся присоединить к себе еще больше (в противоположность металлам), чтобы набрать полный уровень электронов.
Могут находиться:
-
в виде газа (кислород O 8, азот N 7);
-
жидкости (бром Br 35);
-
в твердом (углерод C 6, кремний Si 14) состоянии.
Интересное положение занимает водород H 1. Его причисляют то к 1, то к 17 группе: он, будучи неметаллом, может проявлять и окислительные, и восстановительные свойства.
Структура, наиболее распространенные формы
118 химических элементов делятся на группы и закономерности в зависимости от схожести химических свойств.
Современная версия периодической системы Менделеева обладает 8 или 18 группами химических элементов. Такая разница зависит от формы использования таблицы:
- если в таблице используется нумерация каждой подгруппы в форме арабских цифр, то их число составит 18;
- если в таблице нумерация групп происходит римскими цифрами с добавлением букв A и B, то групп будет 8.
Наиболее частым вариантом использования является нумерация по второму варианту.
Элементы распределяются по подгруппам следующим образом:
- IB, IIB, IVB – VIIB имеют по 4 элемента;
- IIA – VIIA имеют по 6 элементов;
- IA, VIIIA имеют по 7 элементов;
- VIIIB имеет 12 элементов;
- IIIB имеет 32 элемента, 14 из которых являются лантаноидами и еще 14 являются актиноидами + 4 элемента основной таблицы.
Современная версия периодической системы Менделеева обладает 7 периодами, каждый из которых имеет определенное число химических элементов:
- первый — 2;
- второй — 8;
- третий — 8;
- четвертый — 18;
- пятый — 18;
- шестой — 32;
- седьмой — 32 элемента.
Первые три периода относятся к малым, остальные — к большим. В последних усиление неметаллических и ослабление металлических свойств происходит более плавно, чем в малых периодах.
«Короткая» (короткопериодная), «длинная» (длиннопериодная) и «сверхдлинная»
Короткая или короткопериодная версия таблицы по внешнему виду наиболее приближена к варианту, который создал сам Менделеев. Она основана на схожести химических свойств элементов главных и побочных подгрупп.
В данном варианте написания таблицы большие периоды занимают по 2 строчки.
Короткопериодная форма написания таблицы отменена для использования в 1989 году, однако на территории России и СНГ этот вариант до сих пор является основным.
Длиннопериодная на данный момент является общепринятой и самой часто используемой в мире химической науки.
Данный вариант предполагает вынесение отдельных элементов из основной таблицы. Это происходит из-за некоторых их специфических свойств. Они делятся на лантаноиды и актиноиды, которые соответственно относятся к шестому и седьмому периодам.
Также длинная версия периодической системы разделяет группы на подгруппы, из-за чего образуется 18 столбцов вместо 8.
Сверхдлинный вариант предусматривает расположение каждого элемента в своей строчке без вынесения в отдельные строки лантаноидов и актиноидов. Каждый период при таком написании занимает одну строчку.
Помимо основных форм написания периодической системы химических элементов, существуют дополнительные:
- лестничная форма Бора;
- башня Циммермана;
- левосторонняя система Жанета;
- спиральная форма Бенфема;
- радужная лента Хайда;
- 3D-цветок Роя и другие.
Каждая из вышеперечисленных систем подчеркивает значение свойств химических элементов определенных групп или периодов, которые неочевидны при классическом написании традиционной таблицы.
Предсказания тяжёлых элементов
В 1871 году Менделеев предсказал существование элемента, расположенного между торием и ураном. Тридцатью годами позже, в 1900 году, Уильям Крукс выделил протактиний как неизвестную радиоактивную примесь в образце урана. Различные изотопы протактиния затем выделяли в Германии в 1913 и 1918 годах, но современное название элемент получил только в 1948 году.
Версия Периодической таблицы, изданная в 1869, предсказывала существование более тяжёлого аналога титана и циркония, но в 1871 году Менделеев поместил на это место лантан. Открытие в 1923 году гафния подтвердило первоначальное предположение Менделеева.
В период создания первых вариантов периодической таблицы свойства редкоземельных элементов были изучены плохо и недостоверно. Кроме того, для тяжелых элементов периодическое изменение свойств имеет более сложный характер: критерий аналогии атомов не мог помочь Менделееву, как в случае экабора, экаалюминия и экасилиция; в этом случае этот критерий был лишен по крайней мере предсказательной силы, что снижало его научную ценность. Это объясняет, почему предсказания Менделеева для более тяжёлых элементов сбылись не так точно, как для лёгких, и почему эти предсказания не так широко известны.
Периодическая система химических элементов Менделеева
До середины XIX века мир химической науки знал о существовании 63 элементов, которые не имели какой-то определенной системы ранжирования. Сама химия как наука была исключительно описательной и не имела возможностей научного предвидения.
В этот период научный мир стоял в тупике из-за невозможности узнавать о свойствах старых и существовании новых элементов. Создание системы, которая бы могла определить закономерности химических элементов, было основной задачей ученых умов.
Многие исследователи старались первыми систематизировать знания о химических элементах, найти закономерности и создать таблицу, которая могла бы помочь науке в дальнейших исследованиях. Однако все системы имели минусы.
Попеременно переставляя карточки с известными данными о химических элементах, Менделеев создал таблицу, которая, претерпев небольшие изменения, окончательно сформировалась к 1871 году.
Помимо составления таблицы, ученый сформулировал Периодический закон, который в современной формулировке звучит следующим образом:
Общие сведения, как устроена
За все время поиска окончательного внешнего вида таблицы, она имела более сотни вариантов изображения, однако ее современный вид предполагает написание химических элементов в виде двумерной таблицы, в которой столбцы определяют группы элементов, а строки — периоды.
Общее количество элементов достигает 118, каждый из которых имеет свой номер и свое место в таблице Менделеева. Расположение их зависит от присущих им химических свойств.
Группы определяются по степени окисления в оксидах.
Группы делятся на:
- главные подгруппы;
- побочные.
Химические свойства в периодической системе элементов различаются в зависимости от подгруппы.
Положение элементов в таблице зависит от структуры ядра и определяется по принципу возрастания числа протонов в атомном ядре и электронов на электронных уровнях, или по принципу возрастания их порядковых номеров. Принцип возрастания атомной массы не может считаться принципом определения периодичности расположения элементов, так как некоторые элементы выбиваются из общего правила и имеют меньшую или большую массу, чем предполагается составленной периодичностью.
Периоды могут быть:
- малыми;
- большими.
Все периоды, кроме первого, начинаются с щелочного металла и завершаются благородным газом.
Таблица Менделеева важна, но Периодический закон – ещё важнее
Менделеев смог открыть один из всеобъемлющих законов
Как ни странно, важнейшее открытие Менделеева обычно остается за кадром – Периодический закон:
Современная формулировка практически ничего не меняет, лишь дополняя исходный текст:
Периодическая система стала графическим выражением Периодического закона, который устанавливает зависимость свойств элементов от их атомного веса (атомной массы или атомного числа — числа протонов в атоме).
Современный вид таблицы Менделеева
Размещение элементов в таблице удовлетворяет одновременно 2 условиям: они
️ организованы веса атомов,
️ химические и физические свойства каждого элемента сходны с предыдущим.
Закон справедлив для всех существующих и гипотетических элементов, исключая самых первых — они просто не имеют ничего перед собой (хотя многие пытаются разместить там гипотетический «эфир», ссылаясь на самого Менделеева, хотя он таких попыток не делал).
Интересно, что в первой версии было лишь 60 элементов таблицы. Сегодня их 118, а конечно число… Теоретически оно могло бы быть бесконечным, если бы не квантовая физика, но об этом чуть позже.
Легенда о сне Менделеева
Многие слышали историю, что Д. И. Менделееву его таблица приснилась. Эта версия активно распространялась вышеупомянутым соратником Менделеева А. А. Иностранцевым в качестве забавной истории, которой он развлекал своих студентов. Он говорил, что Дмитрий Иванович лёг спать и во сне отчётливо увидел свою таблицу, в которой все химические элементы были расставлены в нужном порядке. После этого студенты даже шутили, что таким же способом была открыта 40° водка. Но реальные предпосылки для истории со сном всё же были: как уже упоминалось, Менделеев работал над таблицей без сна и отдыха, и Иностранцев однажды застал его уставшим и вымотанным. Днём Менделеев решил немного передохнуть, а некоторое время спустя, резко проснулся, сразу же взял листок бумаги и изобразил на нём уже готовую таблицу. Но сам учёный опровергал всю эту историю со сном, говоря: «Я над ней, может быть, двадцать лет думал, а вы думаете: сидел и вдруг… готово». Так что легенда о сне может быть и очень привлекательна, но создание таблицы стало возможным только благодаря упорному труду.
Карл Карлович Клаус
Карл Карлович Клаус был современником и другом основоположников русских химических школ — Н. Н. Зинина (1812—1880) и А. А. Воскресенского (1809 —1880). Наиболее плодотворная деятельность Клауса относится к периоду, когда он в течение 15 лет возглавлял кафедру химии Казанского университета. Преемником и любимым учеником Клауса был А. М. Бутлеров.
К началу тонких аналитических исследований Клауса было известно пять платиновых металлов, выделенных преимущественно английскими учёными: платина, палладий, родий, осмий и иридий. В обстановке, когда всё считалось исследованным, появление сообщения об открытии ещё одного платинового элемента, вдобавок из «глухой России», не могло быть принято иначе, как с недоверием.
Русские исследователи начали заниматься платиновыми элементами давно. За границу просочились сведения о том, что в Сибири имеются россыпи платины
Иностранцы — путешественники неоднократно обращали внимание на золотоносные пески Урала. С другой стороны, русские учёные интересовались платиновыми металлами импортного происхождения
Первая публикация о группе платинидов принадлежит харьковскому проф. Ф. Гизе. Известный учёный, почётный член Петербургской и ряда других академий А. Мусин-Пушкин был одним из пионеров исследования русской платины. Ему же принадлежит авторство приготовления новой соли платинохлористоводородной кислоты. Наиболее убедительный химический анализ загадочного сибирского белого нержавеющего металла был произведён В. В. Любарским. Всё это подготовило почву для начала промышленного освоения русской платины. В 1824 г. открылся платиновый рудник. Добыча «белого золота» стала быстро возрастать и в 1829 г. дошла до 45 пудов. К этому времени П. Г. Соболевский открыл способ приготовления ковкой платины (Волластон сделал аналогичное открытие через два года), что дало возможность в 1828 г. начать чеканку платиновых монет и медалей на Петербургском монетном дворе.
Русское платиновое сырьё исследовалось и с целью нахождения в нём новых химических начал. Дважды ошибочно объявлялось об открытии новых элементов (Варвинским и Озанном). Г. В. Озанн даже дал названия трём, якобы им открытым, элементам: плюраниум, рутениум и полониум, но затем снова повторил свои исследования и отказался от ошибочного мнения. Интересно, что два из трёх названий Озанна оказались живучими и были присвоены позже открытым элементам (Ро и Ru).
Карл Карлович Клаус
Клаус начал заниматься платинидами в Казани в 1841 г. и уже в 1844 г. имел возможность письменно доложить Петербургской АН об открытии нового элемента, названного им в честь его родины «рутением» (Ruthenia — древнее название России). Ряд последующих исследований Клауса был посвящён дальнейшей разработке вопроса и получал освещение в русских академических и некоторых зарубежных изданиях. Всего платинидам Клаус посвятил 8 печатных трудов.
Открытие нового элемента наделало много шума. Вначале к нему отнеслись так же скептически, как и к многочисленным неподтверждённым заявлениям этого рода. Ведь платиновыми элементами занимались в течение 40 лет после открытия пятого из них — осмия — крупнейшие химики мира, а тут неизвестный казанский исследователь Клаус осмеливался утверждать, что он открыл новый элемент! Проба рутения была послана в Швецию Берцелиусу. Вскоре был получен ответ, что это не новый элемент, а «проба нечистого иридия». Как будто все обстоятельства складывались не в пользу учёного. Но Клаус был выдающимся химиком-аналитиком и считал, что он не мог так грубо ошибиться. Дополнительными исследованиями Клаус доказал, что был прав именно он, а не Берцелиус, и то, что он назвал рутением, действительно представляет нечто новое среди элементов. Вскоре Берцелиус вынужден был признаться в своей ошибке. За своё открытие Клаус был удостоен Демидовской премии в 1000 рублей золотом. В лаборатории университета тщательно хранятся оригинальные препараты рутения, его соединений, другие платиновые производные, приготовленные самим Клаусом.
Открытие рутения было сделано Клаусом в лаборатории Казанского университета. По оборудованию она не уступала лучшим зарубежным лабораториям. Несомненно, такая обстановка способствовала тому, что этот университет стал колыбелью русских химических школ с мировой славой. Клаусу по праву принадлежит яркая страница в истории химии. Он оказал большое содействие возвеличению своей родины. Факт открытия нового химического элемента Клаусом ещё раз доказывает, что и в прошлом развития русской химической мысли есть великие достижения, в которых проявляется превосходство русских учёных над иностранцами.
Организация периодической системы
Химические элементы в таблице Д. И. Менделеева расположены по рядам, в соответствии с возрастанием их массы, а длина рядов подобрана так, чтобы находящиеся в них элементы имели схожие свойства. Например, благородные газы, такие как радон, ксенон, криптон, аргон, неон и гелий с трудом вступают в реакции с другими элементами, а также имеют низкую химическую активность, из-за чего расположены в крайнем правом столбце. А элементы левого столбца (калий, натрий, литий и т.д.) отлично реагируют с прочими элементами, а сами реакции носят взрывной характер. Говоря проще, внутри каждого столбца элементы имеют подобные свойства, варьирующиеся при переходе от одного столбца к другому. Все элементы, вплоть до №92 встречаются в природе, а с №93 начинаются искусственные элементы, которые могут быть созданы лишь в лабораторных условиях.
В своём первоначальном варианте периодическая система понималась только как отражение существующего в природе порядка, и никаких объяснений, почему всё должно обстоять именно так, не было. И лишь когда появилась квантовая механика, истинный смысл порядка элементов в таблице стал понятен.
Примечания
- Периодическая система элементов / Д. Н. Трифонов // Большая Советская Энциклопедия / гл. ред. А. М. Прохоров. — 3-е изд. — М. : Советская Энциклопедия, 1975. — Т. 19 : Отоми — Пластырь. — С. 413—417
- Professor Witek Nazarewicz. Researchers Explore Limits of the Periodic Table of Elements. Sci-News.com (20 июня 2018)
- Трифонов Д. Н. Структура и границы периодической системы. — М.: Атомиздат, 1969. — 271 с.
- Химики предложили улучшить таблицу Менделеева. Lenta.Ru (7 октября 2009).
- Messler, R. W. The essence of materials for engineers (англ.). — Sudbury, MA: Jones & Bartlett Publishers (англ.)рус., 2010. — P. 32. — ISBN 0763778338.
- Bagnall, K. W. (1967), Recent advances in actinide and lanthanide chemistry, in Fields, PR & Moeller, T, Advances in chemistry, Lanthanide/Actinide chemistry, vol. 71, American Chemical Society, с. 1–12
- Day M. C., Selbin J. Theoretical inorganic chemistry (англ.). — 2nd. — New York, MA: Reinhold Book Corporation, 1969. — P. 103. — ISBN 0763778338
- Holman J., Hill G. C. Chemistry in context (англ.). — 5th. — Walton-on-Thames: Nelson Thornes, 2000. — P. 40. — ISBN 0174482760.
- Mascetta, Joseph. Chemistry The Easy Way. — 4th. — New York: Hauppauge, 2003. — С. 50. — ISBN 978-0-7641-1978-1.
- Kotz, John; Treichel, Paul; Townsend, John. Chemistry and Chemical Reactivity, Volume 2 (англ.). — 7th. — Belmont: Thomson Brooks/Cole, 2009. — P. 324. — ISBN 978-0-495-38712-1.
- Jones, Chris. d- and f-block chemistry. — New York: J. Wiley & Sons, 2002. — С. 2. — ISBN 978-0-471-22476-1.
- Chang, Raymond. Chemistry. — 7. — New York: McGraw-Hill Education, 2002. — С. 289—310; 340—42. — ISBN 0-07-112072-6.
- Yoder, C. H.; Suydam, F. H.; Snavely, F. A. Chemistry. — 2nd. — Harcourt Brace Jovanovich (англ.)рус., 1975. — С. 58. — ISBN 0-15-506465-7.
- Крицман В. А., Станцо В. В., Энциклопедический словарь юного химика, 1990, с. 180.