Солнечная система по порядку

Происхождение солнечной системы – кратко о гипотезах

Содержание

Для многих детей научно-популярный проект состоит в создании диорам солнечной системы с раскрашенными шарами из пенопласта для планет и орбитальными путями из проволоки. По сей день, когда большинство взрослых думают о Солнечной системе, они представляют себе группу концентрических колец с самыми дальними планетами на самом большом круговом кольце и Солнцем в центре.

Хотя это делает проект аккуратным и аккуратным, на самом деле это неверно. Орбиты планет в нашей солнечной системе (и подавляющего большинства планетных объектов в космосе) на самом деле эллиптические, а не круговые.

Однако, поскольку орбиты представляют собой повторяющиеся паттерны, основанные на гравитации, инерции и массе, как они могут быть чем угодно? но идеальный круг?

Конфигурация планет

Вероятно, вы задаёте вопрос: Что такое конфигурация планет и чем это интересно? По крайней мере, в астрономии понятие конфигурации связывают с взаимным расположением Солнца, планет и других небесных тел. Более того, это относится непосредственно к Солнечной системе.По характеру движения различают конфигурации нижних и верхних планет.

Конфигурация нижних планет

Наблюдаемое с Земли перемещение нижних планет, а точнее Меркурия и Венеры, сопровождается сменой фаз. Движение этих планет осуществляется недалеко от Солнца. Их наибольшее отдаление от него совершается либо на восток, либо на запад от него. В зависимости от направления удаления различают восточную (вечернюю) элонгацию, и западную (утреннюю) элонгацию.

Движение нижних планет бывает попятным, то есть с востока на запад. При этом момент, когда планета следует между Землёй и Солнцем, является нижним соединением. Кроме того, движение может быть прямым, иначе говоря с запада на восток. И в момент, когда Солнце находится между Землёй и планетой, наблюдают верхнее соединение.

Конфигурация верхних планет

Конфигурация верхних планет похожа на нижние. По аналогии происходит прямое и попятное движение. Отличие заключается в меньшей скорости движения. В результате этого наступает момент, когда Солнце догоняет планету. Таким образом, они соединяются. Кроме того, в это время Солнце находится между Землёй и планетой. Во время попятного движения планета оказывается в точке, которая прямо противоположна положению Солнца. Собственно говоря, такой момент называется противостоянием. Именно в этот период Земля расположена между Солнцем и планетой.

Видимое движение верхних планет происходит без смены фаз. Они повернуты к Земле освещённой стороной. Кстати, движение Луны соответствует конфигурации верхних планет.Разумеется, с Земли мы не можем наблюдать за перемещением верхних планет.

Образование планет

Вернёмся, однако, на миллиарды лет назад к своему родному светилу. Внутри образовавшегося диска частички пыли и газа постоянно сталкивались между собой и слипались, в результате чего формировались всё более объёмные небесные тела. Подавляющее их большинство не выросло крупнее картофелеобразных астероидов. Однако нашлись и такие, которые превратились в Землю и семь других планет Солнечной системы. В той связи, что все они образовались внутри одного вращающегося диска материи, который может быть только плоским, объекты эти оказались внутри одной плоскости. Более того, они и вращаются в одном и том же направлении вокруг Солнца.

Планеты Солнечной системы

Имеется множество объектов меньшего размера, движущихся вокруг Солнца по наклонным орбитам — это и Плутон, и кометы, и некоторые астероиды. Все они, вероятно, изначально располагались в описываемой плоскости, но были вытолкнуты из неё Юпитером или Нептуном в тот период, когда эти планеты добирались до нынешних мест своей дислокации. Но им ещё повезло — эти гиганты, как считается, выкинули множество небольших небесных тел вообще за пределы Солнечной системы.

Кому-то это покажется странным, но тот факт, что все планеты вращаются в одной плоскости — это обычное явление, оно наблюдается и в других известных нам звёздных системах. Расстраиваться из-за этой ординарности, конечно же, не стоит. Вспомните, что у нас есть нечто такое, чего мы не смогли пока обнаружить нигде во Вселенной. Разумная жизнь. Люди. В этом плане мы пока весьма уникальны.

Открытие и исследование Солнечной системы

Конкурирующие теории происхождения Солнечной системы

К середине 1700-х годов французский математик Жорж-Луи Леклерк (Georges-Louis Leclerc) предположил, что планеты образовались, когда комета столкнулась с Солнцем, выбрасывая наружу огромное количество вещества.

По его словам, со временем гравитация собрала этот материал вместе, чтобы сформировать орбитальные миры.

К концу века соотечественник Леклерка Пьер-Симон Лаплас (Pierre-Simon Laplace) показал, что это невозможно: любой выброшенный материал был бы втянут обратно гравитацией Солнца.

Затем сам Лаплас начал формулировать альтернативную картину.

Изобретение телескопа позволило астрономам обнаружить серию нечетких пятен, разбросанных по ночному небу.

Они называли их «nebulae» (туманностями), что в переводе с латыни означает «облака».

Лаплас предположил, что Солнце образовалось из такого облака.

По мере того как облако разрушалось под действием гравитации, оно вращалось все быстрее и быстрее, как фигурист, крутящийся на льду.

Согласно Лапласу, вещество должно было быть сброшено с Солнца, поскольку его вращение ускорилось, создав плоский диск, окружающий звезду.

Затем планеты образовались, когда гравитация собрала этот материал вместе.

Однако на рубеже 20-го века от идеи Лапласа почти отказались.

Основная проблема заключалась в том, что если эта картина верна, то Солнце должно вращаться намного быстрее, чем это есть на самом деле, а планеты должны вращаться с более спокойной скоростью.

Рисунок древней солнечной туманности, места рождения звезд.

Не в силах решить эту проблему, такие астрономы, как сэр Джеймс Джинс (James Jeans), обратились к альтернативному объяснению.

В 1917 году Джинс предположил, что в формировании Солнечной системы участвовала еще одна звезда.

Когда эта вторгшаяся звезда пронеслась мимо Солнца, ее сильная гравитация оторвала бы значительное количество звездного материала.

Это, по словам Джинса, обеспечило строительные блоки, необходимые для формирования планет.

Но его идея просуществовала недолго.

К 1929 году было показано, что такое близкое столкновение крайне маловероятно из-за необъятности космоса.

Более того, даже если бы это произошло, Солнце поглотило бы большую часть утраченного материала.

В отсутствие явного лидера новые теории продолжали появляться по прошествии десятилетий.

В 1940-х годах британский астроном Фред Хойл (Fred Hoyle) предположил, что у Солнца когда-то была гораздо более крупная звезда-компаньон, которая взорвалась как сверхновая.

Часть образовавшихся осколков попала в ловушку гравитации Солнца, а затем объединилась, чтобы сформировать планеты.

Но и это не выдерживало критики, отчасти потому, что с трудом объясняло малые массы Меркурия и Марса.

Фред Хойл, профессор астрономии и экспериментальной философии Кембриджского университета.

Лишь в 1970-х годах все стало проясняться, когда астрономы вернулись к теории туманностей Лапласа.

Основная проблема с этой теорией — наблюдаемое вращение Солнца было медленнее, чем ожидалось — можно было бы устранить, если бы сопротивление, вызванное пылинками в окружающем облаке, помогло затормозить.

Затем эта идея была значительно поддержана в начале 1980-х годов, когда астрономы заметили пыльные плоские диски вещества, расположенные вокруг молодых звезд, называемые протопланетными дисками или «проплайдами».

Это эффективно зафиксировало формирование планет в других местах космоса.

Орбиты планет Солнечной системы лежат в одной плоскости проходящей через солнце. Почему все планеты вращаются в одной плоскости?

Если вы взглянете на карту Солнечной системы, то сразу же заметите, что все планеты вращаются в одной плоскости вокруг находящейся в центре звезды. И мы не можем обвинять в этом издателя карты, который решил сэкономить на бумаге. Нет, небесные тела здесь действительно выстроены в своеобразную шеренгу.

Орбиты планет Солнечной системы

Люди заметили это ещё до изобретения телескопов, банально фиксируя положение Солнца и планет на небосклоне. Чтобы понять, почему они оказались в одной плоскости, нужно вернуться ко времени формирования Солнечной системы. Когда-то здесь располагалось огромное сферическое облако газа и пыли, которое медленно вращалось. Затем по какой-то причине оно начало коллапсировать. Говоря более простым языком, сжиматься. Учёные не могут с уверенностью назвать причину, инициировавшую такое развитие событий, но, вероятнее всего, это был не очень далёкий взрыв сверхновой.

Как бы то ни было, гравитация заставила газопылевое облако сгущаться – всё сильнее и сильнее. По мере того как эта сфера уменьшалась в размерах, она вращалась быстрее. Это один из основных физических законов, относящихся к вращающимся системам. Он называется “сохранение момента импульса”. Количество этого момента у того или иного объекта зависит от двух факторов – распределения массы и скорости вращения. Если один меняется, второй должен быть компенсирован – общий момент импульса остаётся неизменным, он сохраняется.

Очередность и траектории планет солнечной системы

Это значит, что по мере того как гигантское газопылевое облако ужималось в размерах, оно быстрее вращалось. В конце концов это вращение создало силу, достаточную, чтобы расплющить облако в диск. Наглядно представьте себе это так – у вас есть круглый комок теста, вы начинаете быстро вращать его вокруг собственной оси, и он превращается в лепёшку для пиццы. Это, кстати, не чисто теоретическая модель. Мы визуально наблюдаем формирование этих дисков вокруг молодых звезд, в том числе и в нашей галактике.

Вернёмся, однако, на миллиарды лет назад к своему родному светилу. Внутри образовавшегося диска частички пыли и газа постоянно сталкивались между собой и слипались, в результате чего формировались всё более объёмные небесные тела. Подавляющее их большинство не выросло крупнее картофелеобразных астероидов, однако нашлись и такие, которые превратились в Землю и семь других планет Солнечной системы. В той связи, что все они образовались внутри одного вращающегося диска материи, который может быть только плоским, объекты эти оказались внутри одной плоскости. Более того, они и вращаются в одном и том же направлении вокруг Солнца.

Планеты Солнечной системы

Имеется множество объектов меньшего размера, движущихся вокруг Солнца по наклонным орбитам – это и Плутон, и кометы, и некоторые астероиды. Все они, вероятно, изначально располагались в описываемой плоскости, но были вытолкнуты из неё Юпитером или Нептуном в тот период, когда эти планеты добирались до нынешних мест своей дислокации. Но им ещё повезло – эти гиганты, как считается, выкинули множество небольших небесных тел вообще за пределы Солнечной системы.

Кому-то это покажется странным, но тот факт, что все планеты вращаются в одной плоскости – это обычное явление, оно наблюдается и в других известных нам звёздных системах. Расстраиваться из-за этой ординарности, конечно же, не стоит. Вспомните, что у нас есть нечто такое, чего мы не смогли пока обнаружить нигде во Вселенной. Разумная жизнь. Люди. В этом плане мы пока весьма уникальны.

Гипотеза О. Ю. Шмидта

Со времен античности считалось, что Земля, Солнце и планеты сотворены Богом в том виде, в котором они и существуют. А. Птолемей создал геоцентрическую систему мира, она была канонизирована церковью, и без изменений просуществовала до эпохи Возрождения.

Рис. 1. Геоцентрическая система Птолемея.

Первую научную гипотезу о происхождении Солнечной системы из пылевого диска выдвинул в середине XVII в Р. Декарт. Данная гипотеза впоследствии дорабатывалась и уточнялась многими авторами, по мере накопления научных знаний о Вселенной.

В настоящее время общепринятой считается гипотеза, разработанная в 1944 г академиком О. Ю. Шмидтом.

Образование протопланетного облака

Солнце – это звезда «второго поколения», образовавшаяся из вещества, оставшегося после взрыва сверхновой первого поколения около 5 млрд. лет назад. Проходя через газопылевую туманность (возможно, образовавшуюся при том же взрыве), Солнце захватило часть этого вещества, которое начало обращаться вокруг Солнца в виде протопланетного облака.

Со временем, в результате действия гравитации протопланетном облаке начали образовываться сгущения, причем, устойчивыми они были только лишь на определенных расстояниях друг от друга, там, где их взаимная гравитация бы не оказывала разрушающего действия.

Рис. 2. Образование Солнечной системы из протопланетного облака.

Образование планет

Более плотная пыль сформировалась в планеты раньше, она образовала внутренние планеты Солнечной системы на расстояниях 0.3 – 1.5 а.е. от Солнца (а.е. – астрономическая единица, средний радиус земной орбиты, равный 150 млн км). У всех этих планет средняя плотность оказалась значительно выше плотности воды.

Почти вся оставшаяся часть, преимущественно газовая, конденсировалась позже, в виде планет – газовых гигантов на расстоянии 5 – 30 а.е. Средняя плотность этих планет близка к плотности воды (для Сатурна даже меньше), но масса этих планет значительно превышает массу внутренних планет Солнечной системы. Поэтому и расстояния между этими планетами больше. Между орбитами Марса и Юпитера (2 – 4 а.е) существует пояс астероидов – зона, где обращается множество мелких астероидов, которые так и не объединились в планету из-за постоянных гравитационных возмущений со стороны Юпитера.

Удаленные части Солнечной Системы

Остатки вещества, находящиеся еще дальше от Солнца, образовали внешние области Солнечной системы – пояс Койпера и гипотетическое Облако Оорта, простирающееся на расстояние до 100тыс а.е. от Солнца (около 1 светового года).

В формировании этих частей большую роль сыграла гравитация планет-гигантов, выбрасывавшая мелкие протопланетные сгустки на периферию Солнечной системы. Сейчас здесь существует множество мелких астероидов и нескольких планет-карликов (Плутон, Макемаке, Хаумеа, Эрида и Седна).

Облако Оорта считается источником большинства комет, появляющихся только один раз. Скорее всего, это долгопериодические кометы, периоды обращения вокруг Солнца которых измеряется тысячелетиями.

Рис. 3. Солнечная система и облако Оорта.

Что мы узнали?

Согласно гипотезе О. Ю. Шмидта, Солнечная система образовалась из протопланетного облака. Cперва сформировались внутренние, более плотные планеты земного типа, потом – менее плотные, но более массивные планеты-газовые гиганты.

  1. /5

    Вопрос 1 из 5

Орбиты планет Солнечной системы

Разумеется, центром нашей системы является Солнце. Собственно, в нём заключена основная масса всей системы. Своей силой тяготения оно притягивает небесные тела.

Солнце

Стоит отметить, значительное количество космических тел в Солнечной системе движутся приблизительно в одной области. Её называют. Другие объекты имеют больший угол наклона по отношению к ней.

Все планеты и многие другие тела вращаются вокруг Солнца против часовой стрелки. Кстати, сама центральная звезда почти все планеты движутся в этом же направлении. Только Венера и Уран имеют противоположное течение.Чем больше удалена планета от Солнца, тем дальше расстояние между орбитами объектов.

Уран (слева) и Венера (справа)

С точки зрения астрономов, небесные тела направляются по эллипсу. Иначе говоря, они движутся по замкнутой кривой на плоскости. В одной из точек эллипса расположено Солнце. Чем ближе объект к нему, тем значительней угловая скорость вращения. Следовательно меньше период обращения. Проще говоря, короче год.

Орбиты планет солнечной системы.

Когда Плутон был расклассифицирован в карликовую планету, Меркурий стал планетой с самой эксцентричной орбитой. Эксцентриситет орбиты это то, насколько планета отклоняется от круглой форма. Лишь в том случае, если орбита идеальный круг, то она имеет эксцентриситет равный нулю, и это число увеличивается с увеличением эксцентриситета.

Эксцентриситет Меркурия — 0, 205. Его орбита находится в диапазоне от 46 миллионов км в самой ближайшей точке к солнцу и 70 миллионов км в самой дальней точке. Самая ближайшая точка к солнцу на орбите, называется перигелий, а самая дальняя точка — афелий. Меркурий — самая быстрая планета, ему требуется всего 88 земных дней, чтобы сделать оборот вокруг солнца.

Эксцентриситет Венеры самый маленький в нашей солнечной системе, составляет 0, 007, т. е орбита Венеры почти идеальный круг. Орбита Венеры колеблется от 107 миллионов км в перигелии до 109 миллионов км в афелии. Венере требуется 224, 7 земных дней, чтобы сделать оборот вокруг солнца. Фактически день на Венере длиннее, чем год, потому что планета очень медленно вращается. В случае если смотреть из северного полюса мира, все планеты вращаются против часовой стрелки, но Венера вращается по часовой стрелке, это единственная планета имеющая такое вращение.

У земли тоже очень маленький эксцентриситет — 0, 017. В среднем планета находится в 150 миллионах км от солнца, но расстояние может варьироваться от 147 до 150 миллионов км. Нашей планете необходимо примерно 365, 256 дня, чтобы сделать оборот вокруг солнца, это и есть причина високосных годов.

Эксцентриситет марса — 0, 093, что делает его орбиту одной из самых эксцентричных в солнечной системе. Перигелий марса составляет 207 миллионов км, и его афелий 249 миллионов км от солнца. В течение долгого времени орбита марса становилась более эксцентричной. Красной планете требуется 687 земных суток, чтобы обернуться вокруг солнца.

Юпитер имеет эксцентриситет 0, 048, с перигелием 741 миллионов км и афелием 778 миллионов км. Ему необходимо 4331 земных дня, т. е 11, 86 наших лет, чтобы облететь солнце.Эксцентриситет Сатурна — 0, 056. Ближайшая точка к солнцу на орбите Сатурна расположена в 1, 35 миллиардов км, а самая дальняя точка удалена от солнца на 1, 51 миллиард км. В зависимости от того, какую позицию Сатурн занимает на своей орбите, его кольца либо видны, либо почти незаметны. Один оборот вокруг солнца занимает 29, 7 земных лет. Фактически, с момента обнаружения Сатурна в 1610 году, немногим более чем за 400 лет, он сделал всего 13 оборотов вокруг солнца.

Перигелий урана 2, 27 миллиардов км, а афелий 3 миллиарда км от солнца. Его эксцентриситет 0, 047. Урану необходимо 84, 3 земных лет, чтобы обернуться вокруг солнца. Уран уникален, потому что он фактически вращается на боку с осевым наклоном почти в 99°.

Эксцентриситет Нептуна, почти настолько же низок как у Венеры. Перигелий планеты составляет 4, 45 миллиардов км и афелий 4, 55 миллиардов км. Так как Плутон был реклассифицирован как карликовая планета, Нептун — планета с орбитой, самой дальней от солнца.

Эволюция солнечной системы

Долгое время учёные считали, что солнечная система за все время своего существования практически никак не изменялась. Но последние исследования показали, что эволюция солнечной системы происходила практически постоянно.

Так, стало известно, что солнечная система была компактной, пояс Койпера был расположен значительно ближе к Солнцу. Но, что самое интересное, что в солнечной системе были и другие планеты, по размеру приблизительно как Юпитер. Но давай по отдельности разберёмся и поймём, как происходила эволюция солнечной системы.

Планеты земной группы

Под конец формирования, в солнечной системе было от 50 до 100 протопланет. Напомним вам, что протопланета – это не со совсем сформировавшийся планета, это зародыш планеты, который прошёл процесс внутреннего плавления. Так вот таких протопланет в солнечной системе было около сотни, они в течение сотни миллионов лет, сталкивались, сливались. В результате получились известные четыре планеты земной группы. Кроме этого, есть версия, что Луна, образовалась от столкновения, когда ещё Земля была протопланетой и, по всей видимости, она столкнулась с аналогичным объектом.

Пояс астероидов

Как известно, между Марсом и Юпитером находится пояс астероидов. Долгое время считалась, там раньше находилась планета, которая была разрушена. В результате чего и образовался это пояс.

Последние исследования не подтвердили эту гипотезу. Первоначально, эта область имела немало материи для строительства 2 или 3 планет, подобию Земли.

Похоже, на первоначальной стадии всё так и происходило, но относительно близко сформировался газовый гигант Юпитер. Под действием орбитальных сил, многие протопланеты, были выкинуты из пояса. Некоторые, попали во внутреннюю солнечную систему, что помогло формированию планет земной группы, а возможно и Луны планеты Земля. Другие были выкинуты во внешние границы солнечной системы.

Планетная миграция

Согласно гипотезе происхождения солнечной системы, две планеты Уран и Нептун находятся не на своём месте. Где их наблюдают сейчас, они не смогли бы сформироваться. Согласно теории возникновение солнечной системы, Уран и Нептун первоначально, находились рядом с Сатурном и Юпитером.

Под действием протопланет, которые ещё не сформировались в полноценные планеты, так вот под их действием, Сатурн и Юпитер вошли между собой в орбитальный резонанс. Произошло это примерно 4 миллиарда лет назад, напомним, что возраст солнечной системы примерно 4,6 миллиарда лет.

Произошло следующее, Сатурн делал один оборот вокруг Солнца, а Юпитер за то же время делал два оборота. Всё это привело к гравитационному давлению на внешние планеты.

Последствия были таковы, что две планеты Уран и Нептун были выкинуты на дальние границы солнечной системы. По той же причине объясняется происхождение пояс Койпера и Облако Оорта.

Бомбардировка планет

Активная бомбардировка планет происходила, когда происходила миграция планет. Так как многие протопланеты были выдавлена во внешние и внутренние границы солнечной системы, то планеты были подвержены активному метеоритному бомбометанию. До сих пор мы видим последствия на Луне, Меркурии, в виде гигантских кратеров.

Всё это происходило, 4 млрд лет назад. Сейчас такие столкновения очень редкие.

Последнее столкновение произошло в 2009 году, когда на Юпитер упал неизвестный объект. В результате на планете образовалось большое тёмное пятно, размером с Тихим океаном.

Всё это говорит, только об одном, что эволюция солнечной системы продолжается.

Как сформировались спутники планет

Образование спутников происходило по трём основным правилам, это:

  • Образование произошло из околопланетного диска.
  • Образование после столкновения, по касательной территории.
  • Образование или вернее захват объекта.

Наш мир продолжает меняться, и эволюция солнечной системы продолжается. Мы привыкли, что солнечная система не изменится и так как она выглядит сейчас будет существовать вечно, но это не так. Давайте заглянет в будущее.

Четыре типа потенциальных планетных орбит

Основная наука, лежащая в основе орбит, заключается в том, что два объекта с массой будут иметь гравитационное притяжение друг к другу, что влияет на их движение в пространстве. Это основной принцип астрономической физики. Обычно мы видим орбиты с одним большим объектом и одним намного меньшим, так что большой кажется относительно неподвижным, а меньший «вращается по орбите». Чтобы понять орбиты, вам также необходимо учитывать энергию, которую оба объекта привносят в систему, и влияние, которое будет иметь на форму орбиты.

Возьмем, к примеру, наше Солнце. Когда объект приближается к Солнцу, в зависимости от его энергии и траектории, он следует по одному из четырех возможных орбитальных путей: спиральные, гиперболические, эллиптические или круглые.

В спиральный вариант означает, что объект будет притягиваться под крутым углом гравитационным притяжением Солнца, возможно, потому, что его масса или энергия очень мала. Объект упадёт в тугую спираль вокруг Солнца, которую даже сложно назвать орбитой, опускаться все ниже и ниже, пока не коснется поверхности.

В гиперболический вариант происходит с объектами, обладающими большой скоростью или удалением от поверхности Солнца. Объект будет приближаться, и его путь будет изогнут к Солнцу, но его скорость и расстояние позволяют ему продолжать движение мимо Солнца, а не втягивать его на повторяющуюся орбиту. После формирования гиперболической орбитальной траектории, напоминающей букву U, она улетит в космос и никогда не вернется, в отличие от двух последних вариантов орбиты.

В круговой вариант это то, чем большинство детей представляют солнечную систему, и хотя некоторые планеты, расположенные ближе к Солнцу, образуют почти идеальные круги (Земля отклонена только на 3 градуса), по-настоящему круговую орбиту очень трудно достичь. Условия должны быть абсолютно идеальными, а именно, чтобы энергия, поступающая в систему, создавала орбиту абсолютно без эксцентриситета, что возможно, но очень редко.

В эллиптическая орбита Вариант — это то, чему следуют все планеты в нашей солнечной системе, и имеет смысл, почему этот тип гораздо более распространен, чем идеальные круги. Когда объект слишком маленький или медленный, чтобы избежать гравитационного притяжения Солнца, он попадает на повторяющуюся эллиптическую орбиту, которая в значительной степени зависит от его исходной энергии и траектории, когда он вошел в систему. На орбиту также могут влиять гравитационные эффекты других вращающихся планетных объектов, что делает ее несовершенной, эксцентричной и сильно зависимой от других факторов.

Что такое «плоскость эклиптики»

Кроме описания звёздного маршрута годичного движения Солнца, эклиптика часто рассматривается как плоскость. Выражение «плоскость эклиптики» частенько можно услышать при описании положения в пространстве различных космических объектов и их орбит.

Плоскость эклиптики пересекается с плоскостью небесного экватора под углом ε = 23°26′.

Если вернуться в схеме движения нашей планеты вокруг материнской звезды и линии, которые можно проложить от Земли до Солнца в разные моменты времени, собрать воедино, окажется, что все они лежат в одной плоскости – эклиптике.

Если из центра диска провести перпендикуляр, то в северном полушарии он упрётся в точку на небесной сфере с координатами:

  • склонение +66,64°;
  • прямое восхождение – 18 ч. 00 мин.

И расположена эта точка недалеко от обеих «медведиц» в созвездии Дракона. Ось вращения Земли, как мы знаем, наклонена к оси эклиптики, благодаря чему на планете есть смена времён года.

Плоскость движения в Солнечной системе

Как уже было сказано, орбиты планет в Солнечной системе находятся почти на одной плоскости, близкой к плоскости орбиты Земли. Зная, что такое орбита планеты,
можно предположить, что причина, по которой планеты движутся в практически одной плоскости, вероятнее всего, все та же: некогда вещество, из которого теперь
состоят все тела в Солнечной системе, было единым облаком и вращалось вокруг своей оси под влиянием внешней гравитации. С течением времени вещество
разделилось на то, из которого образовалось Солнце, и то, которое долгое время было пылевым диском, вращающимся вокруг светила. Пыль постепенно образовала
планеты, а направление вращения осталось прежним.

Понравилась статья? Поделиться с друзьями:
Like children
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: