Съемка мероприятий и событий
Окружающий свет — ваш лучший друг, когда дело доходит до съемки событий. Свадьбы и вечеринки как правило наполнены людьми. Однако часто места для светового оборудования на подобных мероприятиях нет, и фотографу часто приходится полагаться только на камеру и вспышку, чтобы запечатлеть эти события.
f / 2.8, ISO 3200, 1/100 мощность вспышки 1/32 Объектив 24-70 мм
Использование окружающего света является ключом к созданию атмосферы в зале и атмосферы самой вечеринки. Это означает, что фоновые огни, такие как гирлянды, настенные светильники и т. д. должны быть использованы при съемке.
Именно из-за таких огней сцена будет иметь глубину на фото, а не плоский темный фон. Мои стандартные настройки для съемки мероприятий колеблются между f/4 — 5.6, ISO приходится задирать довольно высоко, особенно в помещениях, в темных местах около 3200 — 6400, а выдержку приходится использовать довольно длинную, около 1/60, реже 1/100.
f / 5,6, ISO 3200, выдержка 1/100 объектив 70 — 200 мм
Последнее, что захочет сделать опытный фотограф — это убить окружающий свет и атмосферу, используя вспышку, настроенную на большую мощность импульса для усиления и так слабого освещения, особенно в тех случаях, когда сухой лед используется для создания эффектов дыма и разноцветного освещения для атмосферы вечеринки.
Вы не хотите полностью уничтожать эту атмосферу лишь для того, чтобы осветить лица ваших объектов съемки.
f / 8, ISO 2000, 1/30, объектив 24-70 мм, внешняя вспышка вне камеры
Балансировка мощности вспышки и выдержки затвора является ключом к получению подобных изображений, а также к включению окружающего освещения в кадр.
f / 5,6, ISO 3200, 1/125-я, объектив 24-70 мм со вспышкой вне камеры
f / 5.6, ISO 2500, 1/60, объектив 70 — 200 мм со вспышкой вне камеры и со вспышкой на камере
Научиться правильно работать со светом вспышки и сочетать его с окружающим светом вам поможет обучающий курс Домашняя-мобильная фотостудия для новичка, ознакомиться с курсом можно кликнув по баннеру ниже.
Вы можете использовать окружающий свет на заднем плане для создания силуэтов.
На фото ниже, на балконе не было света. Я использовал свет внутри здания, чтобы создать силуэт одного из гостей.
f / 11, ISO 2000, 1/200, объектив 24-70 мм
[править] Физическая природа и свойства света
Благодаря дисперсии белый свет можно разложить в спектр с помощью призмы Как и любые другие электромагнитные волны, свет характеризуется частотой, длиной волны, поляризацией и интенсивностью. В вакууме свет распространяется с постоянной скоростью, не зависящей от системы отсчета — скоростью света. Скорость распространения света в веществе зависит от свойств вещества и в целом меньше скорости света в вакууме. Длина волны связана с частотой законом дисперсии, который также определяет скорость распространения света в среде.
Взаимодействуя с веществом, свет рассеивается и поглощается. При переходе из одной среды в другую изменяется скорость распространения света, что приводит к преломлению. Наряду с преломлением на границе двух сред свет частично отражается. Преломление и отражение света используется в различных оптических приборах: призмах, линзах, зеркалах, позволяющих формировать изображение.
Излучение и поглощение света происходит квантами: фотонами, энергия которых зависит от частоты:
,
где E — энергия кванта, — частота, h — постоянная Планка.
Обычный дневной свет состоит из некогерентных электромагнитных волн с широким набором частот. Такой свет принято называть белым. Белый свет имеет спектр, который соответствует спектру излучения Солнца. Свет с другим спектром воспринимается как цветной. Дисперсия света позволяет разложить свет на цветные составляющие.
Как и любая другая электромагнитная волна, свет характеризуется поляризацией. Дневной свет обычно неполяризованный или частично поляризованный. Степень поляризации света меняется при каждом акте отражения от любой поверхности или прохождения через любую среду.
Свет переносит энергию. В частности, солнечный свет является одним из основных источников энергии на Земле. Часть этой энергии воспринимается живыми организмами при фотосинтезе. Использование солнечной энергии человечеством — одна из важнейших современных проблем.
Какова скорость света?
Скорость света рассчитывается в двух субстанциях – в вакууме и прозрачной среде. В первом случае ее показатели неизменны. В космическом пространстве скорость света является фундаментальной постоянной единицей и составляет 299 792 458 метров в секунду.
Считается, что помимо света, с аналогичной скоростью в природе распространяются электромагнитные излучения (например, рентгеновские лучи или радиоволны) и, возможно, гравитационные волны. Скорость света, находящегося в прозрачной среде, может меняться в зависимости от фазы колебательных движений.
В связи с этим различают фазовую скорость, которая обычно (но необязательно) меньше скорости в вакууме, и групповую – всегда меньше скорости в вакууме.
Галилео Галилей, его телескоп и основы мироздания
Летом 1669 года, Галилео Галилей, отправился в Венецию – столицу венецианской республики. Галилео был известен как непревзойденный естествоиспытатель и математик, нечуждый еретических взглядов. Будучи профессором университета, Галилей, имел постоянный источник дохода, однако часто оказывался на грани нищеты. Он постоянно искал способы поправить свое финансовое положение. Венецию в то время будоражили слухи об инструменте, который делал, казалось бы невозможное. Так называемая, подзорная труба, приближала удаленные предметы. Галилей понял, что ему улыбнулась удача.
Последнее достижение научно-технического прогресса того времени – устройство подзорной трубы, хранилось в строжайшей тайне. Галилею было известно лишь то, что нужны были две линзы, особым образом, расположенные в трубке. Так что устройство собственного прибора он тоже держал от всех в тайне.
То, что стекло каким-то образом искривляет свет, было известно с момента изобретения первых очков в начале тринадцатого века. Но в отличие от очков, в подзорной трубе и телескопе, используется система линз, которая располагается в строго определенном порядке.
Собранный за несколько недель телескоп Галилея, имел восьмикратное увеличение, то есть, был гораздо мощнее, чем первые подзорные трубы. Оставалось только обратить изобретение в звонкую монету.
И вот 21 августа 1609 года, Галилей взобрался на одну из городских колоколен и продемонстрировал свое изобретение местной знати. Телескоп произвел фурор. Теперь венецианцы были в состоянии заметить приближение кораблей на два часа раньше, чем при наблюдении невооруженным глазом. Военное преимущество и экономические выгоды, которые могла дать подобная информация, были очевидны всем присутствующим. Галилей подарил свой телескоп венецианскому доджу, а взамен ему было обещано пожизненное трудоустройство и двойное жалование.
Поправив свои финансовые дела, Галилей приступил к созданию более мощного телескопа. С его помощью великий ученый вознамерился изменить представление человека о мироздании.
В 1610 году, вышла книга Галилея «Звездный вестник». В ней приводится описание его астрономических наблюдений через оптический прибор.
Издревле считалось, что Земля является центром мироздания, а все небесные тела имеют гладкую поверхность. В телескоп Галилей разглядел, что поверхность Луны не равна и шершава, что там существуют кратеры и горы, достигающие шести километров в высоту, насколько он мог судить по теням, которые они отбрасывают.
Раскрыв ошибочность прежних теорий о небесных телах, телескоп дал Галилею представление и о масштабе Вселенной. Его взору открылось гораздо больше звезд, чем было видно невооруженным глазом. В последних главах книги Галилей сообщает об открытии четырех светил, расположенных на одной оси с Юпитером. Из его рисунков видно, как ночь за ночью меняется их положение. И ввиду того, что тела оставались на одной оси, Галилей заключил, что это вероятно спутники Юпитера, то есть, – это не звезды, – это луны.
Увиденное Галилеем в телескоп, опровергло общепринятое мнение, что Земля является центром, вокруг которого, вращается вся Вселенная.
Открытие спутников Юпитера означало, что не все во Вселенной вращается вокруг Земли, и, что Земля не центр мироздания, а всего лишь одна из множества планет.
Умение искривлять световые волны открыло Галилею глаза на природу мироздания и места человека в нем.
А следующее открытие в области природы света, уводит нас далеко за пределы солнечной системы и знакомит с историей зарождения звезд.
[править] История исследования света
Древнегреческий философ Эмпедокл утверждал, что Афродита создала человеческий глаз из четырех элементов: огня, воздуха, земли и воды, причем она зажгла в глазу огонь, благодаря которому человек может видеть. Так возникла ложная теория эманации, в которой сомневался в своей «Оптике» Евклид, позже Лукреций. Во 2 веке книгу под названием «Оптика» написал также Птолемей. Он описал преломление света, однако придерживался того взгляда, что человек видит благодаря лучам, исходящих из глаза.
В «Книге об оптике» 1021 года Альхазен развил теорию оптических явлений, постулируя, что освещенная поверхность излучает во всех направлениях, но в глаз попадает только один из таких лучей. Ему принадлежит изобретение камеры-обскуры. По его мнению свет — это поток маленьких частиц. Альхазен описал и пытался объяснить многочисленные оптические явления, такие как тени, затмение, радуга, проводил эксперименты по разделению света на разные цвета, пробовал объяснить бинокулярное зрение, изменение видимых размеров Луны и Солнца вблизи горизонта. Благодаря этим исследованиям Альхазен считается отцом современной оптики.
Начиная с 17 века научные споры о природе света шли между сторонниками волновой и корпускулярной теорий. Основателем волновой теории можно считать Рене Декарта, который рассматривал свет как возмущения в мировой субстанции — пленуме. Корпускулярную теорию сформулировал Пьер Гассенди и поддержал Исаак Ньютон. Волновую теорию света разрабатывали Роберт Гук и Христиан Гюйгенс. По мнению Гюйгенса, световые волны распространяются в специальной среде — эфире.
В начале 19 века опыты Томаса Янга с дифракцией дали сильное свидетельство в пользу волновой теории. Было открыто, что свет является поперечными волнами и характеризуется поляризацией. Янг предположил, что различные цвета соответствуют разным длинам волны. В 1817 году свою волновую теорию света изложил в мемуарах для Академии наук Огюстен Жан Френель. После создания теории электромагнетизма свет был идентифицирован как электромагнитные волны.
Победа волновой теории пошатнулась в конце 19 века, когда опыт Майкельсона-Морли не выявил существования эфира. Волны требуют среды, в которой они могли бы распространяться, однако тщательно спланированные эксперименты не подтвердили существование этой среды. Это привело к созданию специальной и общей теории относительности. Природа электромагнитных волн оказалась сложнее, чем распространение возмущений. Рассмотрение задачи о тепловом равновесии абсолютно черного тела со своим излучением привел к появлению идеи об излучении света порциями — световыми квантами, которые получили название фотонов. Анализ явления фотоэффекта показал, что поглощение световой энергии тоже происходит квантами.
С развитием квантовой механики утвердилась идея Луи де Бройля о корпускулярно-волновом дуализме, по которой свет должен иметь одновременно и волновые свойства, чем объясняется его способность к дифракции и интерференции, и корпускулярные свойства, чем объясняется его поглощение и излучение квантами.
Что такое источник света
При разговоре об источнике света, мы подразумеваем объект, излучающий электромагнитное излучение в видимой части спектра. Элементарной частицей света является фотон. Именно отсюда и идет двойственная природа света – корпускулярно-волновой дуализм. Фотон может вести себя подобно частице, а может и подобно излучению. Это зависит от конкретных физических условий. Видимый диапазон находится в пределах от 360 нм до 830 нм. Световое излучение возникает из-за различных физических процессов, происходящих в атомах. Если длина волны находится в диапазоне – мы видим свет. От длины волны зависит цвет.
Если атом получает энергию, то он переходит на более высокий энергетический уровень. Это возбужденное состояние. Он неустойчиво. Электроны стремятся вернуться на более низкие энергетические уровни. В результате этого и рождается фотон. А это и есть свет.
Если все атомы испускают фотоны одновременно, то это уже лазерное излучение. Оно когерентно. Луч лазера не обязательно должен быть видимым. Причем оно существует и в природе. В 1981 году лазерное излучение было обнаружено в атмосфере Марса и Венера. Длина волны составила 10 мкм. На такой длине волны работают лазеры с углекислым газом в качестве рабочего тела.
Фотон меньше электрона?
Масса покоя фотона равна нулю, но он движется со скоростью, равной скорости света, а масса покоя электрона равна 9.1*10-31k
Фотон представляет собой безмассовую частицу, движущуюся с большой скоростью, и, наоборот, скорость электрона мала по сравнению с фотоном, распространяющимся с огромной энергией.
Длина волны фотона де Бройля равна
Длина волны Д’Бройля электрона, если скорость примерно равна 0.9с, тогда
Длина волны электрона различается в зависимости от конфигурации атома и энергии, полученной электроном. Чем больше размер атома, тем меньше его длина волны.
Установлено, что длина волны электрона меньше длины волны фотона. Это связано с тем, что электрон больше фотона.
Общие понятия
Свет — это результат физического процесса, происходящего в атомах вещества. Атомы, получая энергию извне (нагрев, облучение), часть ее передают электронам. Электроны сначала возбуждаются, а затем начинают терять энергию, переходя на нижние энергетические уровни. Каждый переход происходит с излучением фотонов — частиц света, которые воспринимает наш глаз. Фотоны могут проявлять себя либо как волна, либо как частица.
Одной из главных характеристик электромагнитного излучения является длина волны. К видимому свету относятся излучения с длиной волны от 8*10-7 до 4*10-7 м, то есть от красного до фиолетового света.
Свет распространяется в вакууме со скоростью 300 000 км/с или 3*108 см/с. Это самая большая скорость в природе для любых частиц и взаимодействий.
Первые источники видимого света, которые человек изобрел для собственных нужд, использовали разные виды горючего топлива: дерево, жир, сало. В конце XIII швейцарец Аргант изобрел лампу с фитилем, в которую в качестве топлива заливался керосин. Американец Томас Эдисон изобрел лампочку накаливания в конце XIX века. И если лампа с фитилем давно превратилась в настоящий антиквариат, то лампочка накаливания до сих пор верой и правдой служит человеку.
Что такое цвет
Пожалуй, наиболее важной характеристикой видимого света является пояснение что такое цвет. Цвет является неотъемлемым свойством и артефактом человеческого глаза. Как ни странно, но объекты «не имеют» цвета – он существует только в голове смотрящего
Наши глаза содержат специализированные клетки, образующие сетчатку глаза, которая действует как приемники, настроенные на длины волн в этой узкой полосе частот.
Излучение в нижней части видимого спектра, имеющей большую длину волны (около 740 нм) воспринимается как красный, в середине, как зеленый, и на верхнем конце спектра, с длиной волны около 380 нм, считается синий. Все остальные цвета, которые мы воспринимаем, являются смесью этих цветов.
Например, желтый цвет содержит красный и зеленый; голубой — смесь зеленого и синего, пурпурный — смесь красного и синего. Белый содержит все цвета в сочетании. Черный — это полное отсутствие видимого излучения.
Что такое свет с точки зрения физики
Первую научную теорию о природе света предложил в XVIII веке Христиан Гюйгенс, утверждавший, что световое излучение распространяется в пространстве волнами. Исаак Ньютон выдвинул свою концепцию о природе этого явления, согласно которой свет — это поток мельчайших частиц.
В середине XIX-го века наука сформировала новые представления о физической природе света. Прорывом стал закон электромагнитного поля Джеймса Максвелла, который смог гармонично соединить идеи Гюйгенса и Ньютона. Ученый доказал, что световое излучение одновременно является и частицей, и волной.
Эти же представления о явлении света актуальны и для современного научного сообщества. Единицей измерения светового потока принято считать фотон — квант электромагнитного излучения.
Световое излучение — это поперечная волна. Однако в падающем от источника пучке световых волн присутствуют колебания всех возможных направлений, в том числе, и продольных.
Природа явления, какие законы его описывают
За 200 лет активных изучений световых явлений, ученые накопили достаточно информации и сформулировали основные законы распространения светового потока в пространстве.
К ним относятся:
- Прямолинейное распространение светового луча в однородной среде.
- Отражение светового луча от непрозрачной поверхности.
- Преломление светового луча на границе двух разных сред.
Закон прямолинейного распространения утверждает, что видимый свет в однородной среде (воздух, вода) распространяется строго по прямой линии. Если на этой линии разместить предмет, то от него образуется тень.
В неоднородной же среде направление светового луча меняется. Одну часть фотонов поглощает среда, другая — меняет свой вектор движения.
Закон отражения одним из первых сформулирован учеными древности. Из этого закона следуют следующие свойства света:
- Падающий световой поток и отраженный луч находятся в одной плоскости.
- Угол падения светового луча всегда равен углу отражения.
Как действует закон преломления, каждый из нас мог наблюдать в жизни неоднократно. Мы видели как преломляется чайная ложка в прозрачном стакане воды, но не знали, что это объясняется изменением длины световых волн. Попадая в более плотную среду, скорость распространения светового потока уменьшается, и, наоборот, она увеличивается, переходя из воды в воздух. Другим примером, иллюстрирующим закон преломления света в атмосфере является радуга.
Первое знакомство с физикой света
Когда мы только начинаем знакомиться со светом в физике, то представляем его для себя удобным образом, сравнивая с потоком частиц. Это как будто мячики, летящие от источника света к наблюдателю. В общем-то, с природой света, где он корпускула поспорить сложно. Одно только давление света, измеренное Лебедевым, чего стоит. Но чуть позже мы узнаем, что этот поток мячиков оказывается имеет ещё и волновые свойства!
Помните фразу корпускулярно-волновой дуализм? Это именно о том. Свет имеет свойства как частиц, так и волн. Тут не стоит сомневаться, есть множество доказательств. Например, щелевой эксперимент Юнга, где свет продемонстрировал свою суть. В общем-то, обычно на этом наши познания из средней школы о свете заканчиваются. А напрасно, ведь очень много интересных фактов уходят из вида.
Первым моментом, на который стоит обратить внимание, является природа самих частиц. из которых свет состоит
Мы обозначали, что свет — это и частицы, и волна. Но представьте теперь это в своей голове. Получим набор мячиков, который летит и подчиняется ещё и волновым функциям. Замечательно…Только ничего не ясно. Отсюда формируется заведомо неправильное представление.
Характеристики света
Одной из субъективных характеристик света, воспринимаемой человеком в виде осознанного зрительного ощущения, является его цвет, который для монохроматического излучения определяется главным образом частотой света, а для сложного излучения — его спектральным составом.
Свет может распространяться даже в отсутствие вещества, то есть в вакууме. При этом наличие вещества влияет на скорость распространения света.
Скорость света в вакууме с = 299 792 458 м/с (точно, так как с 1983 года единица длины в СИ — метр — определяется как расстояние, проходимое светом за определённый промежуток времени).
Свет на границе между средами испытывает преломление и отражение. Распространяясь в среде, свет поглощается веществом и рассеивается. Оптические свойства среды характеризуются показателем преломления, действительная часть которого равна отношению фазовой скорости света в вакууме к фазовой скорости света в данной среде, мнимая часть описывает поглощение света. В изотропных средах, где распространение света не зависит от направления, показатель преломления является скалярной функцией (в общем случае — от времени и координаты); в анизотропных средах он представляется в виде тензора. Зависимость показателя преломления от длины волны света (дисперсия) приводит к тому, что свет разных длин волн распространяется в среде с разной скоростью; благодаря этому возможно разложение немонохроматического света (например, белого) в спектр.
Как любая электромагнитная волна, свет может быть поляризованным. У линейно поляризованного света определена плоскость (т. н. плоскость поляризации), в которой происходят колебания электрического вектора волны. У циркулярно поляризованного света электрический вектор, в зависимости от направления поляризации, вращается по или против часовой стрелки. Неполяризованный свет является смесью световых волн со случайными направлениями поляризации. Поляризованный свет может быть выделен из неполяризованного пропусканием через поляризатор или отражением/прохождением на границе раздела сред при падении на границу под определённым углом, зависящим от показателей преломления сред (см. угол Брюстера). Некоторые среды могут вращать плоскость поляризации проходящего света, причём угол поворота зависит от концентрации оптически активного вещества; это явление используется, в частности, в поляриметрическом анализе веществ (например, для измерения концентрации сахара в растворе).
Количественно интенсивность света характеризуют с помощью фотометрических величин нескольких видов. К основным из них относятся энергетические и световые величины. Первые из них характеризуют свет безотносительно к свойствам человеческого зрения. Они выражаются в единицах энергии или мощности, а также производных от них. К энергетическим величинам в частности относятся энергия излучения, поток излучения, сила излучения, энергетическая яркость, энергетическая светимость и облучённость.
Каждой энергетической величине соответствует аналог — световая фотометрическая величина. Световые величины отличаются от энергетических тем, что оценивают свет по его способности вызывать у человека зрительные ощущения. Световыми аналогами перечисленных выше энергетических величин являются световая энергия, световой поток, сила света, яркость, светимость и освещённость.
Учёт световыми величинами зависимости зрительных ощущений от длины волны света приводит к тому, что при одних и тех же значениях, например, энергии, перенесённой зелёным и фиолетовым светом, световая энергия, перенесённая в первом случае, будет существенно выше, чем во втором. Такой результат отражает тот факт, что чувствительность человеческого глаза к зелёному свету выше, чем к фиолетовому.
Видимый свет — электромагнитное излучение с длинами волн ≈ 380—760 нм (от фиолетового до красного).
Интерференция
Световые волны, имеющие постоянную разность фаз и одинаковые частоты, производят видимый эффект интерференции, когда происходит усиление или ослабление результирующей волны.
Исаак Ньютон был одним из первых ученых, изучавших явление интерференции. В своем знаменитом эксперименте «Кольца Ньютона» он соединил выпуклую линзу с большим радиусом кривизны с плоской стеклянной пластиной. Если рассматривать эту оптическую систему через отраженный солнечный свет, наблюдается ряд концентрических светлых и темных сильно окрашенных кругов света. Кольца проявляются из-за тонкого слоя воздуха между линзой и пластиной. Свет, отраженный от верхней и нижней поверхности стекла, интерферирует и дает максимум интерференции в виде светлых, а минимум в виде темных колец.
Нейтрон
Вы знаете, что нейтроны находятся в ядре атома. В нормальных условиях протоны и нейтроны слипаются в ядре. Во время радиоактивного распада они могут быть выбиты оттуда. Нейтронные числа способны изменять массу атомов, потому что они весят примерно столько же, сколько протон и электрон вместе.
Нейтроны можно найти практически во всех атомах вместе с протонами и электронами. Водород -1 является единственным исключением. Атомы с одинаковым количеством протонов, но с разным количеством нейтронов называются изотопами одного и того же элемента.
Количество нейтронов в атоме не влияет на его химические свойства. Однако это влияет на его период полураспада, меру его стабильности. Нестабильный изотоп имеет короткий период полураспада, при котором половина его распадается на более легкие элементы.
Видимое излучение в астрономии
Видимый свет горячих объектов, таких как звезды, может быть использован для оценки их температуры.
Излучаемая энергия имеет пиковую длину колебаний около 550 нм, которые мы воспринимаем как видимый белый (или слегка желтоватый).
Если бы температура поверхности Солнца была прохладнее, около 3000 С, это бы выглядело как красноватый цвет, как звезда Бетельгейзе. Если бы это было жарче, около 12000 С, это будет выглядеть голубым, как звезда Ригель.
Звезда Бетельгейзе
Звезда Ригель
Астрономы также могут определить, какие объекты из чего состоят, так как каждый элемент поглощает свет в определенных длинах волн, называемых спектром поглощения. Зная спектры поглощения элементов, астрономы могут использовать спектроскопы для определения химического состава звезд, газопылевых облаков и других удаленных объектов.
Скорость света
Скорость света в вакууме определяется в точности 299 792 458 м/с (около 300 000 км в секунду). Фиксированное значение скорости света в СИ связано с тем, что метр в настоящее время определяется в терминах скорости света. Все виды электромагнитного излучения, как полагают, распространяются в вакууме с точно такой же скоростью.
Различные физики пытались измерить скорость света на протяжении всей истории. Галилей пытался измерить скорость света в семнадцатом веке. Ранний эксперимент по измерению скорости света был проведен Оле Рёмером, датским физиком, в 1676 году. С помощью телескопа Рёмер наблюдал движение Юпитера и одной из его лун Ио,фиксируя при этом моменты затмений Ио. Рёмер обнаружил, что эти моменты зависят от положения Земли на её орбите. Предположив, что такая зависимость обусловлена конечностью скорости света, он вычислил, что свету требуется около 22 минут, чтобы пройти расстояние, равное диаметру орбиты Земли. Тем не менее, его размер не был известен в то время. Если бы Рёмер знал диаметр орбиты Земли, он бы получил значение скорости, равное 227 000 000 м/с.
Другой, более точный способ измерения скорости света выполнил в Европе Ипполит Физо в 1849 году. Физо направил луч света в зеркало на расстоянии нескольких километров. Вращающееся зубчатое колесо было помещено на пути светового луча, который путешествовал от источника к зеркалу и затем возвращался к своему источнику. Физо обнаружил, что при определенной скорости вращения луч будет проходить через один пробел в колесе на пути и следующий разрыв на обратном пути. Зная расстояние до зеркала, число зубьев на колесе, и скорость вращения, Физо удалось вычислить скорость света 313 000 000 м/с.
Существенного прогресса в измерениях скорости света удалось достигнуть в результате применения и совершенствования метода вращающегося зеркала, предложенного Франсуа Араго (1838 г.). Развив и осуществив идею Араго, Леон Фуко в 1862 году получил для скорости света значение (298 000 000±500 000) м/с. В 1891 году Саймон Ньюком, повысив точность измерений на порядок, получил величину (299 810 000±50 000) м/с. В итоге многолетних усилий Альберт А. Майкельсон добился ещё более высокой точности: полученное им в 1926 году значение составило (299 796 000±4 000) м/с. В ходе этих измерений А. Майкельсон измерял время, требовавшееся свету, чтобы пройти расстояние между вершинами двух гор, равное 35,4 км (точнее, 35 373,21 м).
Наивысшая точность измерений была достигнута в начале 1970-х. В 1975 году XV Генеральная конференция по мерам и весам зафиксировала это положение и рекомендовала считать скорость света, равной 299 792 458 м/с с относительной погрешностью 4•10−9, что соответствует абсолютной погрешности 1,1 м/с. Впоследствии это значение скорости света было положено в основу определения метра в Международной системе единиц (СИ), а сама скорость света стала рассматриваться как фундаментальная физическая постоянная, по определению равная указанному значению точно.
Эффективная скорость света в различных прозрачных веществах, содержащих обычную материю, меньше, чем в вакууме. Например, скорость света в воде составляет около 3/4 того, что в вакууме. Тем не менее, замедление процессов в веществе, как полагают, происходит не от фактического замедления частицы света, а от их поглощения и переизлучения заряженными частицами в веществе.
Как крайний пример замедления света, можно сказать, что двум независимым группам физиков удалось «полностью остановить» свет, пропуская её через конденсат Бозе-Эйнштейна на основе рубидия, Тем не менее слово «остановить» в этих экспериментах относится только к свету, хранящемуся в возбужденных состояниях атомов, а затем повторно излучается в произвольное более позднее время, как вынужденное вторым лазерным импульсом излучение. Во времена, когда свет «остановился», он перестал быть светом.
Время распространения светового луча в масштабной модели Земля-Луна. Для преодоления расстояния от поверхности Земли до поверхности Луны свету требуется 1,255 с.
Более современные представления
Современный взгляд гораздо более интересен. Да, никто не отрицает, что принципы корпускулярно-волнового дуализма будут работать и свет будет иметь и природу потока частиц или излучения, и природу волны. Но стоит тут задуматься о строении самой световой частицы.
Думаю, для вас на станет открытием, что частицы, из которых состоит свет — это фотоны. Вот тут нужно остановиться. Фотоны…Частицы…Именно природа самих фотонов делает световое излучение таким, какое оно есть. Её понимание прояснит феномен существования группы мячиков в потоке, которые подчиняются ещё и волновым закономерностям.
Вокруг фотонов ходит множество споров. Началось с того, что появились в лексиконе ученых этакие виртуальные фотоны, то есть частицы лишенные массы и служащие для передачи взаимодействий разного рода. Но что значит лишенные массы. Рассуждения привели к тому, что в общем-то, абсолютно люба частица в итоге может быть описана как виртуальная. И хотя «обычный» фотон и обладает свойствами частицы, но он тоже представляет из себя просто сгусток энергии и является виртуальным (лишенным массы, а потому способным двигаться со скоростью света). Подобным образом сейчас описывается и электрон. Просто возмущение волновой функции. Не будем сейчас влезать в дебри и разбираться, почему у электрона-то масса есть :)…
Отражение света и его законы
Цвет и температура
Излучение энергии воспринимается как изменение цвета. Например, пламя паяльной лампы меняется от красноватого до синего и можно отрегулировать, чтобы жарче горела. Этот процесс превращения тепловой энергии в видимую энергию называется накаливание.
Лампа накаливания высвобождает часть своей тепловой энергии в виде фотонов. Около 800 градусов по Цельсию энергия, излучаемая объектом, достигает инфракрасного излучения. При увеличении температуры, энергия переходит в видимый спектр и у объекта появляется красноватое свечение. Когда объект становится жарче, цвет меняется до «белого каления» и в итоге превращается в синий.