История изучения солнца

Строение, излучение и эволюция солнца

Солнечные особенности и явления

Помимо основных частей Солнца, у нашей звезды есть и другие интересные особенности, которые ученые используют, чтобы лучше понять ее.

Солнечные пятна

Солнечные пятна — это темные области на фотосфере.

Это более холодные области, которые кажутся темнее, чем остальная часть поверхности Солнца.

Солнечные пятна образуются в районах с сильными магнитными полями.

Это всего лишь временные особенности, которые длятся от нескольких дней до месяцев.

Ученые смогли обнаружить вращение Солнца, наблюдая солнечные пятна.

Солнечные вспышки

Солнечные вспышки — это взрывы на Солнце, которые происходят, когда магнитные поля вблизи солнечных пятен искажаются.

Эти кратковременные взрывы испускают высокоэнергетическое излучение, которое может вызвать помехи в радиосвязи и линиях электропередач на Земле.

Солнечные протуберанцы

Солнечный протуберанец представляет собой дугу плазмы, которая закреплена на поверхности Солнца и простирается до короны.

Она может длиться от часов до месяцев.

Протуберанцы также называют «филаментами», если смотреть на них на фоне диска Солнца.

Атмосфера Солнца: фотосфера и хромосфера

Атмосфера — это газовая оболочка небесного тела, которая удерживается его гравитацией. Внешние слои звезд также называются атмосферой. Внешними считаются те слои, откуда хотя бы часть излучения может беспрепятственно, не поглощаясь более высокими слоями, уйти в окружающее пространство.

Атмосфера Солнца начинается на 200–300 км глубже видимого края солнечного диска. Эти самые глубокие слои атмосферы называют фотосферой. Поскольку их толщина составляет не более 1/3000 доли солнечного радиуса, фотосферу иногда условно называют поверхностью Солнца. Плотность газов в фотосфере примерно такая же, как в земной стратосфере, и в сотни раз меньше, чем у поверхности Земли. Температура фотосферы уменьшается от 8000 К на глубине 300 км до 4000 К в самых верхних ее слоях. Температура среднего слоя, к излучению которого чувствителен глаз человека, около 6000 К.

Особую роль в солнечной атмосфере играет отрицательный ион водорода, который представляет собой протон с двумя электронами. В земной природе такой ион не встречается. Это необычное соединение возникает в тонком внешнем, наиболее холодном слое фотосферы при «налипании» на нейтральные атомы водорода отрицательно заряженных свободных электронов, которые поставляются легко ионизуемыми атомами кальция, натрия, магния, железа и других металлов. При возникновении отрицательные ионы водорода излучают большую часть видимого света. Этот же свет ионы хорошо поглощают, из-за чего непрозрачность атмосферы с глубиной быстро растет. Поэтому видимый край Солнца и кажется нам очень резким.

Фотосфера постепенно переходит в более разреженные слои солнечной атмосферы — хромосферу и корону. Хромосфера (греч. «сфера цвета») названа так за свою красновато-фиолетовую окраску. Она видна во время полных солнечных затмений как клочковатое яркое кольцо вокруг черного диска Луны, только что затмившего Солнце. Хромосфера весьма неоднородна и состоит в основном из продолговатых вытянутых язычков (спикул), придающих ей вид горящей травы. Температура этих хромосферных струй в два-три раза выше, чем в фотосфере, а плотность — в сотни тысяч раз меньше. Общая протяженность хромосферы — 10–15 тыс. км.

Солнечное затмение — хорошая возможность наблюдать хромосферу

Рост температуры в хромосфере объясняется распространением волн и магнитных полей, проникающих в нее из конвективной зоны. Вещество нагревается примерно так же, как это происходит в микроволновой печи. Скорости тепловых движений частиц возрастают, учащаются столкновения между ними, и атомы теряют свои внешние электроны: вещество становится горячей ионизованной плазмой. Эти же физические процессы поддерживают и необычайно высокую температуру самых внешних слоев солнечной атмосферы, которые расположены выше хромосферы.

Часто во время затмений или при помощи специальных приборов над поверхностью Солнца можно наблюдать причудливой формы «фонтаны», «облака», «воронки», «кусты», «арки» и прочие ярко светящиеся образования из хромосферного вещества. Они бывают неподвижными или медленно изменяющимися, окруженными плавными изогнутыми струями, которые втекают в хромосферу или вытекают из нее, поднимаясь на десятки и сотни тысяч километров. Это самые грандиозные образования солнечной атмосферы — протуберанцы. При наблюдении в красной спектральной линии, излучаемой атомами водорода, они кажутся на фоне солнечного диска темными, длинными и изогнутыми волокнами. Протуберанцы имеют примерно ту же плотность и температуру, что и хромосфера. Но они находятся над ней и окружены более высокими, сильно разреженными верхними слоями солнечной атмосферы. Протуберанцы не падают в хромосферу потому, что их вещество поддерживается магнитными полями активных областей Солнца. Спектр протуберанцев, как и хромосферы, состоит из ярких линий, главным образом водорода, гелия и кальция. Линии излучения других химических элементов тоже присутствуют, но они намного слабее.

Иногда нечто похожее на взрывы происходит в очень небольших по размеру областях атмосферы Солнца. Это так называемые хромосферные вспышки. Они длятся обычно несколько десятков минут. Во время вспышек в спектральных линиях водорода, гелия, ионизованного кальция и некоторых других элементов свечение отдельного участка хромосферы внезапно увеличивается в десятки раз. Особенно сильно возрастает ультрафиолетовое и рентгеновское излучение: порой его мощность в несколько раз превышает общую мощность излучения Солнца в этой коротковолновой области спектра до вспышки.

Из чего состоит Солнце?

По своему химическому составу наше светило ничем не отличается от других звёзд и содержит: 74,5% – водорода (от массы), 24,6% – гелия, менее 1% – иных веществ (азот, кислород, углерод, никель, железо, кремний, хром, магний и другие вещества). Внутри ядра идут беспрерывные ядерные реакции превращающие водород в гелий. Абсолютное большинство массы Солнечной системы – 99,87% принадлежит Солнцу.

Состав Солнца
Интересный факт: Солнце имеет практически идеальную шарообразную форму. Разница в диаметрах, соединяющих противоположные точки экватора и полюсов, равна 10 километрам. И это при его гигантских размерах!

Исследования Солнца

В 1990 году НАСА и Европейского космического агентства запустили зонд Ulysses, чтобы сделать первые изображения полярных регионов Солнца. В 2004 году космический аппарат НАСА, Genesis собрал для анализа образцы солнечного ветра на Землю для изучения.

Самым известным космическим аппаратом (запущен в декабре 1995 года) который наблюдает за Солнцем является солнечная и гелиосферная обсерватория SOHO, построенная НАСА и ЕКА, и непрерывно наблюдает за светилом присылая на Землю бесчисленные фотоснимки. Она была создана для изучения солнечного ветра, а также внешних слоёв Солнца и его внутреннего строения. Она изображается структура солнечных пятен ниже поверхности, измерили ускорение солнечного ветра, обнаружил корональных волн и солнечные торнадо, обнаружила более 1000 комет, и позволила более точно прогнозировать космическую погоду.

Более поздняя миссия НАСА — космический корабль STEREO. Это два космических корабля, запущенные в октябре 2006 года. Они были разработаны, чтобы наблюдать за активностью на Солнце одновременно сразу с двух разных точек обзора, чтобы воссоздать трехмерную перспективу активности Солнца, что и позволяет астрономам лучше предсказывать космическую погоду.

Солнце вибрирует из-за набора акустических волн, как колокол. Если наше зрение было бы достаточно острым, мы видели, как колебания распространяются вдоль поверхности его диска, выписывая замысловатые узоры. Астрономы из Стэндфордского университета тщательно изучили движения на поверхности Солнца. Солнечные звуковые волны, как правило, имеют очень низкую частоту колебаний, которая не может быть обнаружена человеческим ухом. Для того, чтобы быть в состоянии услышать, ученые усилили их 42 000 раз и прессуют в течение нескольких секунд волн, измеренных в течение 40 дней.

Косовичев Александр, руководитель научной группы и член Стэндфордской команды по изучению солнечных колебаний, нашел простой способ преобразования данных из оборудования, измеряющего вертикальное перемещение поверхности Солнца в звук. Стивен Тейлор, профессор музыки в Университете штата Иллинойс, сочинял музыку на это видео со звуками.

Команда использовала новый метод для расчета спектра воды при температуре солнечных пятен. В своих исследованиях с 1995 года команда зарегистрировала наличие воды — конечно не в жидком виде, но в состоянии пара — в темных областях солнечных пятен. Ученые сравнили инфракрасный спектр горячей воды, с солнечными пятнами.

Вода в солнечных пятен, вызывает что-то вроде «звездного парникового эффекта» и влияет на сброс энергии от пятен. Молекулы горячей воды, кроме того наиболее сильно поглощают инфракрасного излучение в атмосфере холодных звезд.

Влияние Солнца на жизнь на Земле

Благодаря Солнцу существует жизнь на Земле. Его лучи попадают на растения, в результате чего те перерабатывают углекислый газ на кислород, из-за чего люди и животные могут дышать. Также солнечный свет обеспечивает в выработку витамина D в человеческом организме. И пока лучи Солнца достигают земной поверхности, жизнь будет идти своим чередом. Но стоит только солнечному свету по какой-то причине прекратить достигать Земли, как температура планеты начнет стремительно понижаться. Например, из-за ядерного взрыва в верхние слои атмосферы поднимаются огромные количества сажи, пыли и дыма, образуя плотные черные облака. Через них не проникнет солнечный свет и на Земле может возникнуть настоящая ядерная зима.

Солнечная атмосфера и ее строение

Каждая планета Солнечной системы имеет свою атмосферу. У Солнца, как и у других звезд, внешние слои тоже принято называть атмосферой. Солнечная атмосфера имеет свое строение и особенности. Она состоит из:

  • фотосферы;
  • хромосферы;
  • короны.

Фотосфера – это самый глубокий слой солнечной атмосферы.  Его толщина 200-300 километров. Исследователи именно фотосферу считают поверхностью Солнца, поэтому температура фотосферы равна температуре поверхности Светила и в среднем составляет 6000 градусов. Структура фотосферы зернистая, похожая на гранулы. Здесь как раз и наблюдаются протуберанцы и пятна.

Протуберанцы 

Протуберанцы представляют собой достаточно большие облака холодного (если сравнивать с остальной поверхностью Светила) газа, которые образуют солнечную корону. Простыми словами – это языки пламени, стремящиеся вырваться из хромосферы.

Хромосфера очень четко видна, когда происходят полные солнечные затмения. С Земли отчетливо наблюдается  яркое кольцо, которое образуется вокруг темного лунного диска, закрывающего Солнце. Хромосфера тянется на 10 000 – 15 000 километров. Температура здесь значительно выше, чем в фотосфере. Плотность же значительно меньше.

Корона – это третий слой солнечной атмосферы. Он относится к разреженным слоям и считается самым обширным и горячим. Температура здесь в 200 раз выше, чем на поверхности Солнца и может  достигать до 3 миллионов градусов. Астрономы до сих пор ищут объяснение этому явлению. Ученые видят корону как лучистое сияние, имеющее перламутровый оттенок. Ее лучи  самые разнообразные: короткие и длинные, прямые и достаточно изогнутые. Самое отличное время для наблюдения – это время полного солнечного затмения. Оно такое короткое, что попытки зарисовать солнечную корону не всегда были удачными. Сделать качественную фотографию тоже не всегда удается. Астрономами было доказано, что вид (форма и  яркость) короны меняется и в разное время она выглядит по-разному. На это также влияет 11–летний цикл солнечной активности. В год максимума пятен корона приобретает круглую форму, ее лучи видны вдоль экватора и на полюсах. В год минимума пятен лучи можно наблюдать в широтах средних и экваториальных. Корона становиться вытянутой и менее  яркой.

Источник энергии Солнца

Источником энергии Солнца, как и других звезд, является превращение водорода в гелий, которое происходит в центральной части звезды. Подобный процесс, вызванный слиянием легких ядер в более тяжелые, носит название термоядерной реакции и сопровождается выделением большого количества энергии. Из недр Солнца эта энергия переносится излучением, а во внешнем слое – конвекцией плазмы.

Из чего состоят звезды

Звезда — это газовый шар, в центральной части которого происходят термоядерные реакции. Именно благодаря им звезда может светить или достаточно мощно, или долго.

99% массы звезды составляют водород и гелий, а оставшийся процент — это важные «добавки», которые позволяют определить, например, когда звезда формировалась.

Дело в том, что все более тяжелые, чем водород и гелий, элементы образовались уже в результате жизни первых звезд. Часть этих элементов выбрасывалась наружу — к примеру, значительная доля элементов тяжелее железа появилась в результате вспышек сверхновых. Слияние двух нейтронных звезд также влечет за собой масштабные события с выбросом тяжелых элементов.

Фактически все железо, которое есть на Земле, появилось в результате взрыва белого карлика, вспышки сверхновой типа Ia. Поэтому можно сказать, что даже железный привкус крови — это вкус белого карлика.

Строение Солнца

Схема структуры Солнца. Изображение: Pbroks13 / Wikimedia Commons 1-Ядро; 2-Зона лучистого переноса; 3-Зона конвективного переноса; 4-Фотосфера; 5-Хромосфера; 6-Корона; 7-Солнечные пятна; 8-Гранулы; 9-Протуберанец Конечно, у Солнца, состоящего из газов, нет привычной нам твердой поверхности. Значительную ее часть составляет атмосфера, которая по мере движения к центру светила уплотняется. Тем не менее принято выделять 6 «слоев», из которых состоит звезда. Три из них являются внутренними, а следующие три образуют солнечную атмосферу.

Внутреннее строение Солнца

Внутренняя структура нашей звезды включает следующие слои:

Ядро

В центре светила располагается ядро. Именно в этой области идут термоядерные реакции. Радиус ядра оценивается в 150 тыс. км. Температура здесь не опускается ниже 13,5 млн градусов, а давление доходит до 200 млрд атм. Из-за этого вещество здесь находится в крайне плотном состоянии. Его плотность составляет 150 г/куб. см. Это в 7,5 раз выше плотности золота. Именно такие условия необходимы для протекания термоядерных реакций. Надо понимать, что именно в ядре вырабатывается энергия, которую и излучает Солнце. Все остальные области звезды лишь обогреваются ядром, но сами ее не вырабатывают.

Зона лучистого переноса

Над ядром располагается зона радиации, которую также именуют зоной лучистого переноса. Ее внешняя граница проходит по сфере радиусом 490 тыс. км. Температура постепенно падает от отметки в 7 млн градусов на границе с ядром до 2 млн градусов у внешней границы. Также и плотность вещества снижается с 20 до 0,2 г/куб. см. Тем не менее из-за высокой плотности атомы водорода не могут двигаться. То есть если при нагреве, например, воды ее теплые слои поднимаются на поверхность, перенося туда тепло, то здесь такой механизм не работает – вещество остается неподвижным. Единственный способ энергии пробраться через зону радиации – это длительная цепочка поглощений и излучений фотонов атомами водорода. Из-за этого фотон, возникший при термоядерной реакции в ядре, в среднем «пробирается» наружу через зону радиации примерно 170 тыс. лет!

Зона конвективного переноса

Выше располагается зона конвективного переноса толщиной 200 тыс. км. Здесь плотность уже невысока, и вещество активно перемешивается – нагретые газы поднимаются наверх, отдают тепло, остывают и снова погружаются вниз. Скорость газовых потоков может достигать 6 км/с. Именно это движение порождает магнитное поле Солнца. Температура на поверхности падает до 6000° С, а плотность на три порядка ниже плотности земной атмосферы.

Атмосфера

Атмосфера Солнца состоит из следующих слоев:

Фотосфера

Нижний слой атмосферы называют фотосферой. Именно она излучает тот свет, который согревает планеты Солнечной системы. Толщина фотосферы колеблется от 100 до 400 км. На внешней границе фотосферы температура падает до 4700° С.

Хромосфера

Над фотосферой располагается хромосфера – слой толщиной около 2000 км. Её яркость очень мала, поэтому с Земли её можно наблюдать довольно сложно. Удобнее всего это делать во время солнечных затмений. Она имеет специфический красный оттенок. В хромосфере можно наблюдать спикулы – столбы плазмы, выбрасываемые из нижних слоев хромосферы. Время существования одной спикулы не превышает 10 минут, а длина доходит до 20 тыс. км. Одновременно в хромосфере находится около миллиона спикул. Интересно, что с увеличением высоты температура хромосферы не падает, а растет, и на верхней границе может доходить до 20 000° С.

Корона

Верхний слой атмосферы называется короной. Ее верхняя граница до сих пор четко не определена. Вещество в ней крайне разрежено, однако температура в ней может достигать нескольких миллионов градусов. На сегодня ученым не удалось полностью объяснить, за счет каких механизмов солнечная корона разогревается до такой температуры. В короне можно наблюдать протуберанцы – выбросы солнечного вещества, чья высота над поверхностью звезды может достигать 1,7 млн км.

Межпланетные станции «Вега»

Космическая станция «Вега» состояла из двух основных частей — пролетного блока, предназначенного для изучения кометы Галлея, и спускаемого аппарата для исследования Венеры. На пролетном блоке было размещено огромное количество научного оборудования, созданного учеными СССР, Франции, ФРГ, Австрии, Венгрии, Чехословакии и Польши. Землянам впервые предоставилась возможность изучить ядро кометы, для чего на борту «Веги» установили в том числе и телекамеры. Спускаемый аппарат АМС состоял из двух частей: аэростатного атмосферного зонда и посадочного модуля.

Аэростат был оборудован аппаратурой для изучения метеоусловий планеты, посадочный модуль — большим количеством аппаратуры, в том числе и грунтозаборным устройством с буром. В конце 1984 г. АМС «Вега-1» и «Вега- 2» стартовали к Венере. Спустя полгода станции приблизились к планете и, после отделения спускаемых аппаратов, легли на траекторию сближения с кометой Галлея, которое было назначено на 1986 г. При спуске СА «Вега-1» на высоте 17 км сработал сигнализатор посадки, который запустил работы всего научного оборудования, рассчитанного на изучение поверхности планеты. Посадка СА «Вега-2» прошла более успешно. Автоматика работала как часы, и ученым удалось получить результаты анализа пробы грунта в месте посадки.

Оба ПА опустились на ночную поверхность Венеры на равнине Русалки

Главное внимание ученых все же было приковано к аэростатам. После отделения от СА в течение нескольких минут зонд наполнялся гелием, после чего лег в дрейф в атмосфере Венеры

В течение 46 часов он пролетел более 11 тыс. км, передавая на Землю данные о температуре, давлении, скорости ветра и освещенности. Как только зонд «Вега-1» закончил свою работу, на вахту заступил аэростат АМС «Вега-2». Оба СА плыли на высоте около 50 км, в наиболее плотном слое венерианской облачности. Ученые справедливо предполагали, что именно здесь особенно ярко проявляются процессы суперротации атмосферы Венеры — стремительное вращение, в 20 раз превышающее скорость вращения планеты. Из-за этого феномена на венерианской поверхности ни на минуту не затихает ураган огромной силы.

Сборка межпланетной станции «Вега»

Оба пролетных аппарата после отстыковки СА у Венеры получили дополнительное ускорение и направились на рандеву с кометой. В 1986 г. «Вега-1» и «Вега-2» передали на Землю огромное количество научной информации о комете Галлея, в том числе и снимки ее ядра. Оказалось, что оно состоит из обычного льда и пылевых частиц.

Более интересные факты о Солнце

  • В науке есть особая область, специально изучающая Солнце — гелиофизика. Оно имеет дело с природой Солнца и его влиянием на Солнечную систему;
  • В то время как Земля вращается вокруг одной звезды, Солнца, некоторые экзопланеты на самом деле вращаются вокруг нескольких звезд. Некоторыми примерами являются «Kepler-34b», который вращается вокруг двойной звезды, и «Kepler-64b», который находится в 4-звездной системе;
  • Солнце может вместить все 8 планет Солнечной системы, и примерно в 600 раз больше!
  • Самая крупная из известных звезд — красный гипергигант «Stephenson 2-18». Его радиус в 2150 раз больше солнечного, а яркость примерно в 500 000 раз превышает яркость Солнца;
  • Следующей по яркости звездой на нашем ночном небе после Солнца является Сириус. Его видимая величина составляет -1,46, что делает его в 13 миллиардов раз менее ярким, чем Солнце. Однако это только потому, что Солнце гораздо ближе к нам. Будучи звездой А-типа, Сириус на самом деле намного горячее Солнца.

Есть ли у Солнца другое имя?

Хотя у нашего Солнца нет официального научного названия, у него есть другое распространенное имя: Солнце.

Это имя происходит от древнеримского бога Солнца Сола.

В этом альтернативном названии мы получаем термин «солнечная система», что буквально означает систему Солнца.

Солнце имеет диаметр 1 392 684 километра.

Это эквивалентно 109 диаметрам Земли!

Солнце — звезда главной последовательности G-типа.

Часто описывается как Желтый карлик, но это не совсем точно.

Понравилась статья? Поделиться с друзьями:
Like children
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: