Разность потенциалов на практике
С общепринятой точки зрения, разность потенциалов – это напряжение между двумя выбранными точками цепи. В то же время напряжение между каждой из этих точек и третьей точкой будет отличаться в полном соответствии с определением.
Наглядный пример:
- Точка А в электрической схеме – напряжение 10 В относительно провода заземления;
- В точке В напряжение составляет 25 В относительно того же провода.
Необходимо найти напряжение между точками А и В.
В данном случае искомая разность составляет:
UAB= ϕА-ϕВ=10-25=15 В.
Рассматриваемые понятия важны для минимального объема знаний в области электротехники и электроники, поскольку на них основываются все расчеты и практические решения. Без этих азов невозможно более углубленное изучение электрических дисциплин.
Постоянный ток
Вторым способом передачи электрического тока потребителю, является постоянный ток. Подобный ток является выпрямленным. Он встречается в аккумуляторах, батарейках, зарядных устройствах. Такой ток и сейчас подается потребителям некоторых стран, но в очень малых количествах. Его вырабатывают солнечные батареи. Постоянный ток можно подавать по действующим ЛЭП и подземным кабелям. Плюсы такой передачи, следующие:
- С расстоянием нет потери мощности. Не придется завышать напряжение на электростанции.
- Статическая устойчивость не оказывает влияния на передачу и распределение.
- Не требуется настраивать частотную синхронизацию.
- Напряжение можно передать всего по одной линии с одним контактным проводом.
- Нет влияния электромагнитного излучения.
- Минимальная реактивная мощность.
Постоянный ток для потребителя не подается только по причине огромной себестоимости оборудования для электростанций.
Проводимость электрического тока и процент завышения в начале передачи, во многом зависят от сопротивления самой ЛЭП. Снизить сопротивление, — а тем самым нагрузку — можно при помощи охлаждения до сверхнизкой температуры. Это помогло бы увеличить расстояние для передачи энергии и существенно снизить потери. Сегодня нет технологии занижения температуры линии электропередачи. Такая технология является крайне дорогой и требует больших изменений в конструкции. Но в регионах крайнего севера этот способ вполне работает и намного занижает процент передачи мощностей и потери от расстояния.
Измерение напряжения
Для замера напряжение используется прибор вольтметр, хотя сейчас наиболее популярны мультиметры. Мультиметр это такой комбинированный прибор имеющий в себе много чего. О нем я писал в статье и рассказывал как им пользоваться.
Вольтметр это как раз тот прибор который измеряет разность потенциалов между двумя точками. Напряжение (разность потенциалов) в любой точке схемы обычно измеряется относительно НОЛЯ или ЗЕМЛИ или МАССЫ или МИНУСА батарейки
Не важно главное это должна быть точка имеющая наименьший потенциал во всей схеме
Итак чтобы измерить напряжение постоянного тока между двумя точками, делаем следующее. Черный (минусовой ) щуп вольтметра втыкается в ту точку, где предположительно мы можем наблюдать точку с меньшим потенциалом (НОЛЬ). Красный щуп (плюсовой) втыкаем в точку, потенциал которой нам интересен.
И результатом измерения будет числовое значение разности потенциалов, или другими словами напряжение.
Если бы электроны двигались в проводах со скоростью света
Представим, что скорость электронов в проводнике все-таки близка к световой. В этом случае современная энергетика была бы невозможна в привычном для нас виде. Если бы электроны двигались по проводам, пролетая 300 000 километров в секунду, пришлось бы решать очень сложные технические задачи.
Самая очевидная проблема: на такой скорости электроны не смогут следовать за поворотами проводов. Разогнавшись на прямом участке, заряженные частицы будут вылетать по касательной как не вписавшиеся в вираж автомобили. Чтобы удержать летящие на космических скоростях электроны внутри энергетических магистралей, придется снабжать провода электромагнитными ловушками. Каждый участок проводки станет похожим на фрагмент адронного коллайдера.
К счастью элементарные частицы предвигаются гораздо медленнее и для передачи энергии на дальние расстояния вполне пригодны неизолированные алюминиевые провода для ЛЭП
Надеемся, что ознакомившись с этим обзором, вы нашли ответ на вопрос почему ток не бежит по кабелям со скоростью света и вспомнили кое-что из школьного курса физики, а это, согласитесь, крайне полезно в любом возрасте.
Источник
Распространенные стандарты. Стандарт Х10
Наиболее известным из стандартов передачи команд по силовой сети является Х10. Данный стандарт был разработан очень давно, в 1975 году шотландской компанией «Pico Electronics». Данные передаются с помощью пачки импульсов частотой 120 кГц и длительностью 1мс. Они синхронизированы с моментом перехода переменного тока через нулевое значение. За один переход через нуль передаётся один бит информации. Приёмник ожидает такой сигнал в течение 200 мкс. Наличие импульса вспышки в окне означает логическую «единицу», отсутствие — логический «ноль». Биты передаются дважды: первый раз в прямом виде, второй раз инвертировано. Обычно модули выполняются как отдельные устройства, но сейчас всё чаще выполняются не на основе разных компонентов, а с использованием микроконтроллера. Это уменьшает размер приемника, что позволяет встроить «умную начинку» даже в патрон электрической лампы или дверной звонок.
Как говорилось ранее, высокочастотный сигнал не может распространяться дальше трансформаторной подстанции и фазы. Поэтому для получения связи на другой фазе используют так называемые активные ретрансляторы. Но необходимо учитывать, что приемник слушает сигнал только в определенные моменты времени. Поэтому используют или «умные» приемники, с измененными параметрами
У данного стандарта связи есть как плюсы, так и минусы. Во-первых, он разработал очень давно, тогда не было микроконтроллеров, и вся схемотехника была аналоговой, с использованием многочисленных компонентов. Поэтому и протокол связи очень низкоскоростной: за один период сети передается не более одного бита. Дело в том, что бит передается дважды: в первом полупериоде он передается в прямом виде, а во втором полупериоде — инверсно. Во-вторых, некоторые команды передаются группами. Это еще больше увеличивает время обмена данными.
Также значительным недостатком этого протокола является отсутствие подтверждения приема команды устройством. Т.е., послав команду, мы не можем быть уверены в гарантированной его доставке получателю. Это также не способствует распространению данного стандарта.
Время и электрический сигнал
Как я уже сказал, сигнал передается во времени и в пространстве. То есть время — важный параметр для электрического сигнала. Сейчас нам придется немного попотеть и вспомнить курс математики и физики за среднюю школу. Вспоминаем декартову систему координат. Как вы помните, по вертикали мы откладывали ось Y, по горизонтали Х:
В электронике и электротехнике по Х мы откладываем время, назовем его буквой t, а по вертикали мы отложим напряжение, обозначим его буквой U. В результате наша система координат будет выглядеть вот таким образом:
Прибор, который показывает нам изменение напряжения во времени называется осциллографом, а график этого напряжения называется осциллограммой. Осциллограф может быть цифровым:
или аналоговым:
Важно: все компьютерные беспроводные дела — это одно и то же радио
Блютус, вайфай, все сотовые стандарты, NFC и другие беспроводные протоколы — это всё радио. Это всё возмущения в одном и том же электромагнитном поле — только с разной частотой, скоростью и способами кодирования. Прямо сейчас, когда вы это читаете, вы сидите в центре огромного электромагнитного шторма от всех электромагнитных излучателей вокруг вас. Если вы сейчас достанете антенну и послушаете это излучение, вы услышите всё, что происходит в «эфире» электромагнитного поля. Другое дело, что вы не сможете это дешифровать, но это детали. Представьте, что мы все сидим в одном озере и пускаем волны по его поверхности. Вот в этом хаосе волн и приходится работать всем нашим роутерам и мобильникам.
И ещё пикантная деталь: все наши радиоволны, которые прошли сквозь ионосферу и улетели в космос, продолжают бесконечный полёт по электромагнитному полю со скоростью 300 тысяч км/с, лишь изредка сталкиваясь с пылью и шальными звёздами. Если где-то на другом конце галактики инопланетяне тоже изобретут радио, с большой вероятностью они поймают наши сигналы (когда эти сигналы долетят).
Конструктор ЗНАТОК 320-Znat «320 схем»
Конструктор ЗНАТОК 320-Znat «320 схем» — это инструмент, который позволит получить знания в области электроники и электротехники а также достичь понимания процессов происходящих в проводниках.
Конструктор представляет собой набор полноценных радиодеталей имеющих спец. конструктив, позволяющий их монтаж без помощи паяльника. Радиокомпоненты монтируются на специальную плату — основание, что позволяет в конечном итоге получить вполне функциональные радиоконструкции.
Используя этот конструктор можно собрать до 320 различных схем, для построения которых есть развернутое и красочное руководство. А если подключить фантазию в этот творческий процесс то можно получить бесчисленное количество различных радиоконструкций и научиться анализировать их работу. Этот опыт я считаю очень важен и для многих он может оказаться бесценным.
Вот несколько примеров того, что Вы можете сделать благодаря этому конструктору:
Летающий пропеллер;
Лампа,включаемая хлопком в ладоши или струей воздуха;
Управляемые звуки звездных войн, пожарной машины или скорой помощи;
Музыкальный вентилятор;
Электрическое световое ружье;
Изучение азбуки Морзе;
Детектор лжи;
Автоматический уличный фонарь;
Мегафон;
Радиостанция;
Электронный метроном;
Радиоприемники, в том числе FM диапазона;
Устройство, напоминающее о наступлении темноты или рассвета;
Сигнализация о том, что ребенок мокрый;
Защитная сигнализация;
Музыкальный дверной замок;
Лампы при параллельном и последовательном соединении;
Резистор как ограничитель тока;
Заряд и разряд конденсатора;
Тестер электропроводимости;
Усилительный эффект транзистора;
Схема Дарлингтона.
P.S. У нас тут есть своеобразный жлобометр — жадный не заметит соцкнопки, а щедрый делится с друзьями.
Проводниковые среды передачи информации
Витая пара
Витая пара представляет из себя два изолированных медных проводов, обычный диаметр которых составляет 1 мм.
Провода свиваются один вокруг другого в виде спирали.
Это позволяет уменьшить электромагнитное взаимодействие нескольких расположенных рядом витых пар.
(Два параллельных провода образуют простейшую антенну, витая пара — нет.)
Сигнал обычно передается в виде разницы потенциалов в двух проводах, составляющих пару. Это обеспечивает лучшую устойчивость к внешнему шуму, так как шум одинаково влияет на оба провода, и, таким образом, разница
потенциалов остается неизменной.
Самым распространенным применением витой пары является телефонная линия.
Витая пара может передавать сигнал без ослабления мощности на расстояние, составляющее несколько
километров. На более дальних расстояниях из-за ослабевания сигнала требуются повторители.
Коаксиальный кабель
Коаксиальный кабель состоит из твердого медного провода, расположенного
в центре кабеля, покрытого изоляцией. Поверх изоляции натянут цилиндрический
проводник, обычно выполненный в виде мелкой медной сетки. Он покрыт наружным
защитным слоем изоляции (пластиковой оболочкой).
Коаксиальный кабель лучше экранирован, чем витая пара, поэтому может обеспечить передачу
данных на более дальние расстояния с более высокими скоростями. Данный вида кабелей
используется для передачи радиочастотных электрических сигналов.
Благодаря совпадению осей обоих проводников у идеального коаксиального кабеля оба компонента электромагнитного поля полностью сосредоточены в пространстве между проводниками и энергия не теряется.
Коллизии
Коаксиальный кабель — разделяемая среда передачи. Важная особенность разделяемой среды: ее могут использовать одновременно несколько интерфейсов, но передавать в каждый момент времени должен только один. С помощью коаксиального кабеля можно соединит не только 2 компьютера между собой, но и более двух, без применения активного оборудования. Такая топология называется шина. Однако если хотябы два узла на одной шине начнут одновременно передавать информацию, то их сигналы наложатся друг на друга и приемники других узлов ничего не разберут. Такая ситуация называется коллизией, а часть сети, узлы в которой конкурируют за общую среду передачи — доменом коллизий. Для того чтоб распознать коллизию, передающий узел постоянно наблюдает за сигналов в среде и если собственный передаваемый сигнал отличается от наблюдаемого — фиксируется коллизия. В этом случае все узлы перестают передавать и возобновляют передачу через случайный промежуток времени.
Пускай в сети, изображенной на рисунке, узлы A и С одновременно начнут передачу, но успеют ее закончить раньше, чем примут сигнал друг друга. Так как каждый из передающих узлов примет встречный сигнал только после того, как уже закончит передавать свое сообщение — факт того, что произошла коллизия не будет установлен ни одним из них, а значит повторной передачи кадров не будет. Зато узел B на входе получит сумму сигналов и не сможет корректно принять ни один из них. Для того, чтоб такой ситуации не произошло необходимо ограничить размер домена коллизий и минимальный размер кадра.
Таким образом чем больше потенциальный размер сегмента сети, тем больше накладных расходов уходит на передачу порций данных маленького размера. Разработчикам технологии Ethernet пришлось искать золотую середину между двумя этими параметрами, и минимальным размером кадра была установлена величина 64 байта.
Первая передача — коды RZ и Манчестер-II
Код RZ
RZ — это трехуровневый код, обеспечивающий возврат к нулевому уровню после передачи каждого бита информации. Его так и называют кодирование с возвратом к нулю (Return to Zero). Логическому нулю соответствует положительный импульс, логической единице — отрицательный.
Информационный переход осуществляется в начале бита, возврат к нулевому уровню — в середине бита. Особенностью кода RZ является то, что в центре бита всегда есть переход (положительный или отрицательный). Следовательно, каждый бит обозначен. Приемник может выделить синхроимпульс (строб), имеющий частоту следования импульсов, из самого сигнала. Привязка производится к каждому биту, что обеспечивает синхронизацию приемника с передатчиком. Такие коды, несущие в себе строб, называются самосинхронизирующимися.
Недостаток кода RZ состоит в том, что он не дает выигрыша в скорости передачи данных. Для передачи со скоростью 10 Мбит/с требуется частота несущей 10 МГц. Кроме того, для различения трех уровней необходимо лучшее соотношение сигнал / шум на входе в приемник, чем для двухуровневых кодов.
Наиболее часто код RZ используется в оптоволоконных сетях. При передаче света не существует положительных и отрицательных сигналов, поэтому используют три уровня мощности световых импульсов.
Код Манчестер-II
Код Манчестер-II или манчестерский код получил наибольшее распространение в локальных сетях. Он также относится к самосинхронизирующимся кодам, но в отличие от кода RZ имеет не три, а только два уровня, что обеспечивает лучшую помехозащищенность.
Логическому нулю соответствует переход на верхний уровень в центре битового интервала, логической единице — переход на нижний уровень. Логика кодирования хорошо видна на примере передачи последовательности единиц или нулей. При передаче чередующихся битов частота следования импульсов уменьшается в два раза.
Информационные переходы в средине бита остаются, а граничные (на границе битовых интервалов) — при чередовании единиц и нулей отсутствуют. Это выполняется с помощью последовательности запрещающих импульсов. Эти импульсы синхронизируются с информационными и обеспечивают запрет нежелательных граничных переходов.
Изменение сигнала в центре каждого бита позволяет легко выделить синхросигнал. Самосинхронизация дает возможность передачи больших пакетов информацию без потерь из-за различий тактовой частоты передатчика и приемника.
Большое достоинство манчестерского кода — отсутствие постоянной составляющей при передаче длинной последовательности единиц или нулей. Благодаря этому гальваническая развязка сигналов выполняется простейшими способами, например, с помощью импульсных трансформаторов.
Частотный спектр сигнала при манчестерском кодировании включает только две несущие частоты. Для десятимегабитного протокола — это 10 МГц при передаче сигнала, состоящего из одних нулей или одних единиц, и 5 МГц — для сигнала с чередованием нулей и единиц. Поэтому с помощью полосовых фильтров можно легко отфильтровать все другие частоты.
Код Манчестер-II нашел применение в оптоволоконных и электропроводных сетях. Самый распространенный протокол локальных сетей Ethernet 10 Мбит/с использует именно этот код.
Источник электрического тока
Самым простым и общеизвестным источником электрического тока является аккумулятор, в уменьшенном виде аккумуляторная или простая батарейка. Это источники постоянного тока. У этих источников есть плюса.
Есть положительный полюс, который обозначается знаком плюс (+). И отрицательный полюс который обозначается знаком минус (-).
Если полюса соединить с потребителем электрического тока, например лампочкой с помощью проводника (проводов), то электрический ток начнет движение в определенном направлении (под действием электрического поля) и лампочка загорится.
Ток течет от плюса к минусу, хотя обычно принято говорить что наоборот
Но, на начальном этапе это не столь важно
Какие бывают источники электрического тока, выделим три основных:
- Гальванический источник – батарейка или аккумулятор.
- Термический источник или термоэлемент, в таком элементе электрический ток появляется при повышении температуры.
- Фотоэлемент – электричество появляется при воздействии излучения.
Гальванический элемент
Выше я привел обозначение гальванического элемента на схеме. Гальванический элемент это такое устройство, в котором происходят химические реакции. При этих реакциях выделяется энергия, которая превращается в электрическую энергию.
Гальваническими элементами можно считать батарейку и аккумулятор. Суть этих элементов такова.
Есть два металлических элемента, один из них анод (например, цинк) и катод (например, медь). Эти элементы помещены в определенную среду (электролит). Причем не важен форм-фактор этих элементов. Это может быть цинковая пластина и угольный стрежень, или две пластины, не суть.
Изображение из Википедии https://ru.wikipedia.org/
Катод и анод имеют разные заряды, положительный и отрицательный. В результате разных зарядов в электролите начинается движение электронов, то есть появляется электрическое поле, благодаря которому образуется электрический ток.
Со временем происходящие в гальваническом элементе реакции ослабевают, и поэтому приходится покупать новую батарейку или заряжать автомобильный (например) аккумулятор.
Остальные элементы (источники) в данной статье я не рассматриваю. Надеюсь что в целом все понятно. Перейдем к проводнику.
Проводник электрического тока
Проводник это неотъемлемая часть электрической цепи. Он служит для передачи электрического тока от источника к потребителю (приемнику).
Как вы уже знаете проводник обычно это металл. Провода электрического тока в наших квартирах это, обычно, медные или алюминиевые проводники. Как же происходит движение электричества в металле?
Металлы в твердом состоянии имеют кристаллическую решетку. В этой решетке расположены положительно заряженные ионы, а между ними движутся отрицательно заряженные электроны. Отрицательный заряд электронов (всех) равен положительному заряду электронов (всех). Поэтому в своем обычном состоянии провода не баются током.
Кристаллическая решетка металла
Электроны в металле, как и во многих других средах, движутся беспорядочно. Но если мы соединяем источник и потребитель с помощью провода, то от источника на металл начинает действовать электрическое поле и электроны начинают двигаться быстрее и в определенном направлении.
Некоторое беспорядочное движение электронов присутствует, но это движение можно сравнить с перемещением частиц воздуха в автомобиле, который едет с большой скоростью.
При этом электрический ток происходит по всему проводу (проводнику) который подключен к источнику электрического тока.
Потребитель электрического тока
Приемник или потребитель электрического тока это то, что потребляет ток для какой-либо работы.
Например, лампочка потребляет электрический ток для освещения, обогреватель для повышения окружающей температуры, электрооборудование для выполнения различной работы.
Без потребителя в цепи произойдет замыкание, о нем я расскажу в следующих материалах настоящего самоучителя электрика.
На потребителях не будем останавливаться подробно, тут все в целом должно быть понятно – все то, что для выполнения своей работы нуждается в электрическом токе, можно называть потребителем.
Современный чайник является хорошим примером потребителя электрического тока.
Замыкатель электрической цепи
Замыкателем электрического тока выступает любое устройство, которое замыкает и размыкает электрическую цепь.
Что бы загорелась лампочка нужно щелкнуть выключателем. Что бы чайник начал нагревать воду воду нужно щелкнуть выключателем. Все это замыкатели электрической цепи.
Электрический ток
Согласно школьного курса физики – это упорядоченное движение заряженных частиц. Заряженными частицами, в зависимости от среды распространения, считаются электроны или ионы. Для металлов эти частицы – электроны, для некоторых газов или электролитов – ионы. Считается что именно их движение и являются электрическим током.
Как известно, в мире физики, объекты, обладающие разностью зарядов притягиваются, чтобы достигнуть равновесного состояния. Этот факт отлично подтверждает всем известный эксперимент с эбонитовой палочкой. Таким образом, электрический ток — это поток электронов или ионов, стремящихся воссоздать равновесие в мире электрических зарядов.
Не углубляясь в разновидности проводников, рассмотрим обыкновенные электрические провода и электроны, бегущие в них. Электроны заряжены отрицательно, значит их массовое скопление — это отрицательно заряженный объект. В то же время положительно заряженный объект — это место где имеется нехватка этих самых электронов, а значит скопление ионов (атомов с недостающими электронами). Так как природа стремится воссоздать равновесие, образуется поток электронов от минуса к плюсу.
Если природа стремится к равновесию, то отчего же образовались эти недостачи и излишки электронов?
Ответ довольно банален, за исключением некоторых природных явлений вроде молнии или статических разрядов. Люди их создают искусственно, чтобы пользоваться стремлением, или другими словами, силой природы прийти в равновесное состояние, в своих интересах. Как это происходит подробно рассказано в статье про источники тока.
Маленькая особенность: так как само явление электричества было открыто гораздо раньше его природы (упорядоченного движения электронов в металлах), а раньше люди думали, что движутся положительно заряженные частицы), то принято считать, что электрический ток течет от плюса к минусу, хотя сейчас уже ясно, что всё происходит наоборот. В консервативном мире науки решили ничего не менять и продолжают пользоваться веками укоренившейся схемой.
Поняв, как всё это движется, можно попробовать разобраться, что нам даёт этот самый электрический ток. Прохождение электронов по проводнику сопровождается массой удивительных физических явлений, от простого нагревания проводника, до электромагнитного поля вокруг него, но обо всём по порядку.
Как известно, электроны очень маленькие и понаблюдать за ними даже через самый мощный микроскоп не удастся. Поэтому для понимания и визуализации такого действа как электрический ток, придумали очень удобное сравнение — сравнение с водопроводной трубой.
Итак, представим себе водопроводную трубу, она является проводником или просто проводом, очень близко не так ли? В этой трубе течет вода – капли которой очень похожи на электроны, текущие в проводах. Эту воду что-то толкает и ей что-то мешает.
Поток воды можно описать присущими ему свойствами, такими как давление и скорость, а характеристики трубы можно описать такими понятиями как её пропускная способность и сопротивление потоку воды.
По аналогии поток электронов, то есть электрический ток, можно описать такими характеристиками как электрическое напряжение (давление для воды) и сила тока (объём потока воды). Электрический проводник по аналогии с трубой можно описать таким свойством как сопротивление электрическому току (сопротивление потоку воды).
К примеру, тонкая труба может пропустить лишь небольшой поток воды, точно также, тонкий провод способен пропустить поток электронов только с небольшой силой тока. Тонкая струйка, вылетающая из водного пистолета, имеет большую скорость, но очень маленький объем воды, также искра, вылетающая из пьезоэлемента зажигалки, имеет высокое напряжение, но очень маленькую силу тока.
Представим себе огромную трубу диаметром в целый метр и из неё течет, а лучше сказать «вываливается» огромное количество воды, при этом давление в ней довольно низкое (единицы атмосфер), но поток воды просто огромен (сотни литров в секунду). Та же история с толстым проводом точечной электросварки, напряжение там невысокое (несколько вольт), но сила тока просто огромная (сотни ампер), в месте контакта плавится металл. Предположим, что на краю трубы есть кран и он закрыт, вода внутри есть, но она никуда не течёт. Тоже самое с проводником, если цепь от плюса к минусу разорвана, а воздух для электрического тока настолько же труднопроходимая среда, как кран для воды, то ток тоже никуда не течёт. Но электроны из проводника, как и вода из трубы, никуда не делись и напряжение, как и давление в трубе тоже осталось, нет только потока электронов, а значит сила тока равна нулю.
Характеристики каналов передачи данных
Рис. 2.1.2. Зависимость волнового импеданса скрученной пары и фазы (сечение 0,5мм) от частоты
Сопротивление скрученной пары от коммутатора до терминального оборудования может лежать в пределах 800-20000 Ом. Следует учитывать, что при подаче питания на терминальное оборудование (телефон) по подводящему кабелю, большое его сопротивление, помимо прочего, приведет к падению питающего напряжения. В многожильных кабелях определенные проблемы создают перекрестные наводки и шумы. Обычно рассматриваются два случая перекрестных наводок:
- Источник сигнала и приемник находятся по одну сторону кабеля (NEXT — near end crosstalk);
- Приемник и источник находятся на разных концах кабеля (FEXT — far end crosstalk).
Дециметровые волны — вайфай, блютус и мобильная связь
Самый популярный диапазон в IT — от 300 мегагерц до 3 гигагерц. Сюда попадает вайфай, блютус, протоколы умного дома, охранные брелки и прочие подобные вещи, включая микроволновки. Все современные стандарты мобильной связи тоже попадают в этот диапазон, поэтому иногда связь пропадает, на первый взгляд, просто так, а на самом деле ей может мешать работающая рядом микроволновка.
Чем выше частота, тем большую плотность передачи сигнала можно в ней закодировать, поэтому операторы сотовой связи взяли себе самые высокие из доступных частот. По этой же причине вайфай использует эти же частоты — чтобы передавать данные по воздуху как можно быстрее. О том, как устроено кодирование сигнала в зависимости от частоты, мы расскажем в следующей статье.
Вывод скорости распространения электромагнитных волн из теории Максвелла
Раньше, чем электромагнитные волны были получены в экспериментах, Максвелл вычислил скорость этих волн, используя свою теорию поля. Рассмотри плоскую электромагнитную волну (одномерная задача, означающая, что $\overrightarrow{E\ }и\ \overrightarrow{H\ }зависят\ только\ от\ одной\ координаты,\ допустим\ x$), которая распространяется в однородной среде ($j_x=j_y=j_z=0,\ при\ \varepsilon =const,\ \mu =const$). В таком случае система уравнений Максвелла в скалярном виде будет записана как:
Исключим из уравнений Максвелла электрическое поле. С этой целью используем формулу, связывающую индукцию магнитного поля и его напряженность:
и продифференцируем второе уравнение системы (2) по времени, получим:
Первое уравнение системы (2) продифференцируем по $x$, и используем уравнение:
в результате имеем:
Сравним уравнения (4) и (6), запишем:
Уравнение (7) есть волновое уравнение, следовательно, коэффициент, который стоит при $\frac{{\partial }^2H}{\partial x^2}$ — квадрат скорости распространения электромагнитной волны:
$c$- скорость света. В вакууме скорость электромагнитных волн будет выражена как:
Замечание
Теория Максвелла предсказала, что скорость распространения электромагнитных волн в вакууме равна скорости света — этот факт доказывает, что свет имеет электромагнитную природу.
Замечание 1
Основные процессы при распространении волн в проводах происходят не внутри проводов, а в окружающей их среде. Следовательно, если среда вне провода изменится, то скорость электромагнитных волн будет другой, длина волны при неизменной частоте генератора станет другой.
В справедливости формулы (8) легко убедиться на опыте, если часть двухпроводной линии, которая первоначально была в воздухе погрузить в воду. Для воды $\mu \approx 1,\ \varepsilon >1,$ следовательно, скорость электромагнитных волн в воде меньше, чем в воздухе, значит расстояние между соседними узлами (пучностями) станет меньше.
Следует учитывать, что $\mu \ и\ \ \varepsilon $ зависят от частоты. Поэтому при нахождении скорости применяя формулу (8) следует использовать их значения, соответствующие частоте колебаний в электромагнитной волне.
Пример 1
Задание: Параллельные провода (рис.2) находятся в некотором веществе, магнитная проницаемость которого равна $1$, диэлектрическая проницаемость не равна $1$. Они посредством индуктивности соединены с генератором. При высокой частоте колебаний $\nu $ в системе устанавливаются стоячие электромагнитные волны. Вдоль проводов перемещают газоразрядную трубку $А$, по интенсивности ее свечения определили положения пучностей напряженности электрического поля, расстояние между которыми оказались равны $\triangle x$. Какова диэлектрическая проницаемость вещества?
Рисунок 2.
Решение:
Стоячие электромагнитные волны появляются как результат интерференции волн, которые распространяются по двухпроводной линии от генератора в прямом направлении с волнами, которые отражаются концами линии. При высокой частоте электромагнитных колебаний основные процессы, которые связаны с распространением волн, происходят в среде, которая окружает провода.
В соответствии с теорией Максвелла скорость электромагнитных волн в среде равна:
\
По условию задачи для данного вещества $\mu =1$, диэлектрическая проницаемость выразится из (1.1) как:
\
Скорость электромагнитных волн связана с длинной волны как:
\
Расстояние между соседними пучностями в стоячей волне равно половине длины волны ($\triangle x=\frac{1}{2}\lambda $), в таком случае имеем:
\
Ответ: $\varepsilon =\frac{c^2}{{4\triangle x^2\nu }^2}.$
Пример 2
Задание: Какова скорость распространения электромагнитной волны в концентрическом кабеле, в котором пространство между внешним и внутренним проводами заполнено диэлектриком с проницаемостью $\varepsilon ?$ Считайте, что потерями в кабеле можно пренебречь.
Решение:
Согласно теории Максвелла, скорость распространения электромагнитных волн в веществе равна:
\
Магнитную проницаемость среды можно считать равной единице, тогда выражение (2.1) перепишем в виде:
\
Ответ: $v=\frac{c}{\sqrt{\varepsilon }}.$