Понятие и определение света с точки зрения физики

Что такое световой год?

Спектральный состав света

Как показал в своих экспериментах английский естествоиспытатель Ньютон, обычный белый свет – это набор многих цветов, то есть волн с различной длиной, которые в результате взаимодействия складываются в один белый. Длина волн видимого спектра лежит в диапазоне 380-780 нанометров. 

Наука смогла доказать, что практически любой вариант излучения не является монохроматичным – то есть, состоящим из волн только одной длины. Почти любой источник света испускает определенный спектр излучения, в котором есть разброс по длинам волн.

Если излучение имеет более короткие волны, нежели 380 нм, то они относятся к ультрафиолетовому свету, если большие 780 нм – инфракрасному. За их пределами сверху и снизу есть и другие типы излучения: гамма-лучи, рентгеновские волны, микроволновой диапазон.

§ 67. Преломление света. Закон преломления света

Рассмотрим, как меняется направление луча при переходе его из воздуха в воду. В воде скорость света меньше, чем в воздухе. Среда, в которой скорость распространения света меньше, является оптически более плотной средой.

Таким образом, оптическая плотность среды характеризуется различной скоростью распространения света.

Это значит, что скорость распространения света больше в оптически менее плотной среде. Например, в вакууме скорость света равна 300 000 км/с, а в стекле — 200 000 км/с. Когда световой пучок падает на поверхность, разделяющую две прозрачные среды с разной оптической плотностью, например воздух и воду, то часть света отражается от этой поверхности, а другая часть проникает во вторую среду. При переходе из одной среды в другую луч света изменяет направление на границе сред (рис. 144).
Это явление называется преломлением света.

Рис. 144. Преломление света при переходе луча из воздуха в воду

Рассмотрим преломление света подробнее. На рисунке 145 показаны: падающий луч АО, преломлённый луч OB и перпендикуляр к поверхности раздела двух сред, проведённый в точку падения О. Угол AOC — угол падения (α), угол DOB — угол преломления (γ).

Рис. 145. Схема преломления луча света при переходе из воздуха в воду

Луч света при переходе из воздуха в воду меняет своё направление, приближаясь к перпендикуляру CD.

Вода — среда оптически более плотная, чем воздух. Если воду заменить какой-либо иной прозрачной средой, оптически более плотной, чем воздух, то преломлённый луч также будет приближаться к перпендикуляру. Поэтому можно сказать, что если свет идёт из среды оптически менее плотной в более плотную среду, то угол преломления всегда меньше угла падения (см. рис. 145): γ < α

Луч света, направленный перпендикулярно к границе раздела двух сред, проходит из одной среды в другую без преломления.

При изменении угла падения меняется и угол преломления. Чем больше угол падения, тем больше угол преломления (рис. 146). При этом отношение между углами не сохраняется. Если составить отношение синусов углов падения и преломления, то оно остаётся постоянным.

Рис. 146. Зависимость угла преломления от угла падения

Для любой пары веществ с различной оптической плотностью можно написать: ,

где n — постоянная величина, не зависящая от угла падения. Она называется показателем преломления для двух сред. Чем больше показатель преломления, тем сильнее преломляется луч при переходе из одной среды в другую.

Таким образом, преломление света происходит по следующему закону: лучи падающий, преломлённый и перпендикуляр, проведённый к границе раздела двух сред в точке падения луча, лежат в одной плоскости.

Отношение синуса угла падения к синусу угла преломления есть величина постоянная для двух сред: .

В атмосфере Земли происходит преломление света, поэтому мы видим звёзды и Солнце выше их истинного расположения на небе.

Вопросы:

1. Как меняется направление луча света (см. рис. 144) после того, как в сосуд наливают воду?

2. Какие выводы получены из опытов по преломлению света (см. рис. 144, 145)?

3. Какие положения выполняются при преломлении света?

Упражнения:

Упражнение № 47

1. Угол падения луча из воздуха в стекло равен 0°. Чему равен угол преломления?

2. Перечертите в тетрадь рисунок 147. Для каждого случая начертите примерно преломлённый луч, считая, что все изображённые тела изготовлены из стекла.

Рис. 147

3. Положите на дно чайной чашки монету и расположите глаз так, чтобы край чашки закрывал её. Если в чашку налить воду, то монета станет видна (рис. 148). Почему?

Рис. 148

4. В оптике часто приходится иметь дело с прохождением света сквозь тело, имеющее форму призмы, клина (рис. 149, а). Луч, падающий на призму (например, на её боковую грань), преломляется дважды: при входе в призму и при выходе из неё.

Рис. 149

Перечертите в тетрадь изображённое на рисунке 149, б сечение призмы (треугольник) и падающий на её грань луч. Постройте ход луча сквозь призму. Покажите, что при прохождении сквозь треугольную призму такой луч отклоняется к основанию треугольника.

5. В каждой из трёх закрытых коробок (они показаны на рисунке 150 в виде чёрных квадратов) находится одна или две треугольные призмы; показан ход лучей через эти призмы. Нарисуйте расположение призм в этих коробках.

Рис. 150

Предыдущая страницаСледующая страница

Отражение света и его законы

Наверное, нет человека, который бы не наблюдал одно из явлений. Снежинки попадают в свет фар автомобиля или солнечные лучи попадают в запыленную комнату, или солнце освещает влажный воздух леса.

 

Сами снежинки не являются источниками света, но человек их видит. Но видит только те, которые падают на землю в свете фар. Падающий снег за пределами автомобиля человеческий глаз не фиксирует.

 

В пыльной комнате наблюдается плавное движение мелких пылинок в том месте, где через окно проникает солнечный свет. Но ведь это не значит, что пыль в комнате находится только там, где лучи света. Пылинки летают по всей комнате, но не видны глазом.

 

В утреннем влажном лесу там, куда прокрадываются яркие лучи, становятся видны мельчайшие капельки воды и лесные пылинки. Они тоже есть по всему лесу, но видны только, где свет.

Эти явления объясняются тем, что человеческий глаз воспринимает свет, идущий от источника или отраженный от освещенного тела.

Если взять в темноте лист бумаги, то сказать, какого цвета этот лист, невозможно. Лист – не источник света и не освещен, поэтому он невидим. Другое дело, если лист попал в руки в светлом помещении. Человек его видит, так как бумага отражает световые лучи, отраженные лучи уже попадают в глаз.

Так снежинки в свете фар, капельки воды и пылинки на свету отражают лучи света, которые и воспринимает человек.

Приведенные примеры показывают, что свет обладает свойством отражения. Как и прямолинейность распространения света, древнегреческим ученым Евклидом был открыт первый закон отражения света. «Световые лучи обратимы» — утверждали древние ученые. Современная трактовка закона следующая:

Для экспериментального подтверждения этого закона используется устройство, называемое оптическим диском.

Оптический диск.

На светлый круг этого прибора нанесена шкала с градусами. Яркая лампочка осветителя находится в светонепроницаемом футляре с очень узким отверстием. В центре диска прикрепляется отражающая поверхность, например, зеркальная пластинка. Осветитель имеет возможность перемещаться вокруг диска.

Из осветителя луч света от лампочки падает на пластинку и отражается от нее. Если переместить осветитель, направление падения луча света изменится. Соответственно изменится и направление отражения света. Но все это происходит в одной плоскости диска, что подтверждает первый закон отражения света.

При сравнении углов, которые образуются световыми лучами в этих опытах, подтверждается второй закон отражения света. Но прежде, чтобы его понять, следует изучить геометрическую схему отражения света.

На схеме представлен геометрический подход к изучению световых явлений. Пучки света заменены геометрическими лучами и добавлены некоторые геометрические элементы, нужные для исследования.

  • α – угол падения;
  • β – угол отражения.
  • прямая MN – плоскость отражения;
  • СО – перпендикуляр к поверхности отражения;
  • АО – падающий луч;
  • ОВ – отраженный луч;

Нужно четко запомнить: углы падения и отражения берутся не к поверхности отражения, а к проведенному в точку падения перпендикуляру.

Если передвигать осветитель вокруг диска, угол падения будет меняться. Угол отражения тоже изменится и будет таким же, как угол падения. Это свойство отражения является вторым законом отражения света:

Если падающий луч пойдет от точки В по направлению ВО, то он отразится от поверхности MN как раз по линии ОА. Это свойство называют обратимостью световых лучей, о чем говорили еще в древности, но дать научного объяснения не могли.

Конечен ли луч света?

Свет и цвет

Если направить луч света от фонарика на какой-нибудь объект, мы увидим его след в виде круглого сечения. Но, что будет, если направить свет вдаль, например, на небо? Он при этом будет продолжаться бесконечно либо все-таки у луча есть конечная точка?

Из чего состоит световой луч?

Световой луч в оптике – это линия, вдоль которой перемещается энергия света. Проще говоря, это пучок света, имеющий небольшую толщину. В свою очередь, свет представляет собой электромагнитное излучение (либо волны), которое человек воспринимает глазами.

Глаз человека способен различать лишь определенный диапазон излучения

Помимо видимой части, электромагнитное излучение также бывает и невидимым для наших глаз. Сюда относятся микроволны, инфракрасное, ультрафиолетовое излучение, рентгеновские лучи и др.

Световой луч состоит из фотонов – элементарных мельчайших частиц. Фотоны считаются одновременно и волнами, и частицами. У них нулевая масса и электрический заряд, нет определенного размера и структуры. При этом фотоны переносят электромагнитное взаимодействие и двигаются со скоростью света.

Фотоны могут отражаться и поглощаться материей. У них имеется определенная энергия и именно от нее зависит цвет, который субъективно воспринимают наши глаза. Видимый диапазон довольно небольшой, а остальные виды электромагнитного излучения улавливаются и фиксируются специальными приборами.

Есть ли у луча света начало и конец?

Представим световой луч в виде прямой линии. У нее обязательно есть начало. Чертить линию, казалось бы, можно бесконечно. Однако если прекратить это делать, линия оборвется на конечной точке.

Так как луч света состоит из фотонов, он представляет собой нечто более сложное, чем просто линию. Поскольку у данных частиц нет массы, то и никакие силы на них не действуют. Передвигаясь со скоростью света, фотоны «живут» в своем ритме, не очень понятном для нас.

Свет прямолинеен лишь в однородной среде, а в неоднородной он образует несколько пучков

Для фотона период его жизни занимает буквально мгновение от зарождения и до того момента, как его поглотит какой либо объект. Началом луча является источник света. В вакууме (космическом пространстве) фотоны будут двигаться бесконечно. Они просто не сталкиваются с какими-либо препятствиями на своем пути.

Для фотона есть только 2 варианта развития событий, если он встречается с объектом: отражение или поглощение. Что именно произойдет, зависит от самого объекта. Например, если включить свет в комнате, она наполнится огромнейшим количеством фотонов.

Они начнут двигаться в пределах помещения, то и дело сталкиваясь с окружающими предметами. При этом одни частицы отражаются от предмета, а другие – поглощаются им и передают свою энергию. Затем предмет излучает новые фотоны, но уже с меньшей энергией.

Пока свет в комнате включен, все эти процессы протекают без остановки, ведь каждую секунду вырабатываются новые частицы. Если выключить свет, уже выработанные фотоны продолжают движение до определенного момента, пока не потеряется вся энергия. Для наших глаз свет, естественно, исчезает практически мгновенно – можно заметить, что мы еще пару секунд продолжаем видать предметы в темноте.

Чем дальше от источника свет, тем шире становится его луч

В пространстве без каких-либо ограничений световой луч будет продолжаться бесконечно. Однако чем дальше от источника, тем больше становится поперечное сечение луча. Таким образом, фотоны рассеиваются все сильнее и сильнее по определенной области, но не исчезают совсем.

Чем дальше от источника света находится наблюдатель, тем меньшее количество фотонов улавливает глаз. Поэтому световой луч становится слабее. Но фотон не может распадаться, так как это стабильная частица.

У луча света есть начало (источник), но нет конца. Он состоит из множества фотонов, которые двигаются прямолинейно. Фотон – это неделимая элементарная частица (и волна), которая не может исчезнуть просто так. Если на пути светового луча нет препятствий, то он продолжается бесконечно, хоть и рассеивается постепенно из-за увеличения поперечного сечения.

Если Вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Дисперсия света и оптическая плотность среды

Теперь, когда вы знаете о преломлении лучей, попробуйте объяснить возникновение радуги. Верно! Солнечные лучи распространяются в воздухе и встречают на своем пути мельчайшие капельки воды. Когда лучи проходят через них, они преломляются. Помимо этого, преломляясь, белый луч света будто расщепляется на радужный спектр от красного до фиолетового цветов, рождая при этом радугу.

Явление разложения света на спектральные цвета при прохождении через оптически плотное вещество называется дисперсия.

Теперь вам может стать интересно, реально ли получить радугу самим, в условиях эксперимента. Если да, то нам нравится ваше научное любопытство! Самостоятельно получить радугу возможно, и впервые этот опыт проделал ученый Исаак Ньютон. Он направил световой луч через прозрачную стеклянную призму и получил радужный спектр.

Это интересно
Свет может давать разные цвета, которые зависят от длины его волны. Например, самые длинные волны красного цвета, а самые короткие — фиолетового.

Внимательно посмотрите на картинку. Световой луч, если бы не разница в оптической плотности между воздухом и стеклом, не изменил бы свое направление. Он продолжил бы двигаться, как ни в чем не бывало. Но по законам геометрической оптики, он был вынужден исказиться дважды: при переходе из воздуха в стекло и еще раз, при переходе из стекла в воздух. Этот излом луча происходит благодаря такому показателю, как оптическая плотность среды.

Запомните!
Среда, в которой скорость распространения света меньше, — это оптически более плотная среда, и наоборот.

Этот показатель можно сравнить с обыкновенной плотностью. Только представьте: луч света распространяется в воздухе. Воздух — это газ, он состоит из бесконечного множества молекул. Расстояние между ними достаточно велико, что позволяет свету распространяться без каких-либо помех. При переходе из воздуха в воду (или стекло, кристалл), луч «замечает»: вещество также состоит из мельчайших частиц, но они расположены друг к другу ближе. «Проталкиваясь» среди молекул, луч теряет свою скорость. Это можно сравнить с тем, как вы бы проходили через толпу на танцполе к сцене, где выступает ваша любимая группа. Быстро это сделать точно бы не получилось.

Свет

Если тело, будь то Солнце или лампочка, излучает свет, его называют светящимся. Большинство тел не светятся, и мы видим их только потому, что они отражают свет, порожденный светящимся телом. Одни тела светятся более ярко, другие менее. Меру яркости называют силой света. Чем дальше от нас светящийся объект, тем меньше сила света, из-за расхождения световых волн в пространстве.

силаЗемлеСолнцеВоздействие Солнца на Землюпоперечнымивоздухводасредой

Отражение и преломление 

В однородной среде свет распространяет­ся прямолинейно, но при изменении свойств среды может изменить направление. Некоторые вещества отражают свет, т.е. луч отскакивает от поверхности объекта. От блестящих и гладких поверхностей свет отражается под тем же углом, под ко­торым падает. Шероховатые поверхности отражают свет под разными углами и тем самым рассеивают его. Изображение, возникающее на поверхности, от которой отражается свет, называют мнимым, поскольку глаз видит не сам объект, а только воспринимает отраженные световые волны. Преломление происходит в том случае, когда световой луч изменяет направление, переходя из одной среды в другую. Так, вода плотнее воздуха, поэтому при переходе света между ними меняется его скорость, а по­тому и направление. Именно поэтому объекты, находящиеся под водой, кажутся нам искаженными или изломанными.

Что такое луч в математике

Не секрет, что знания, которые вы получили в школьные годы не всегда остаются с вами впоследствии Иногда бывает полезно изучить новое или освежить в памяти то, что вы давно забыли. Сегодня вы вспомните такое понятие как луч.

Луч — геометрическое понятие

Луч — это такая прямая линия, один из концов которой ограничен точкой, а другой продолжается до бесконечности. Таким образом, фигура тянется вперёд без ограничений. но только с одной стороны. Вторая сторона не может тянуться дальше точки, которая является началом фигуры.

На картинке вы можете посмотреть, что такое луч и как он выглядит:

Луч отмечается посредством строчной латинской буквы или двух таких точек, которые обозначены заглавными буквами латинского алфавита.

Если вы увидите отрезок с двумя точками и продолжите его в одну из сторон, как показано на рисунке, то получится луч.

Отличия луча от прямой и от отрезка

В геометрии есть три схожих понятия, которые подразумевают под собой черту — это луч, отрезок, прямая. Эти фигуры всегда изображаются без изгибов и имеют ряд особенностей.

В рамках курса математики луч — это полупрямая. Дело в том, что с одного конца он обладает признаком бесконечности, который присущ прямой линии.

В начальной точке луч имеет сходство с отрезком, так как он так же ограничен точкой.

Обратите внимание — быстро отличить фигуры друг от друга вы можете по наличию у них начала и конца:

  • отрезок имеет начальную и конечную точки;
  • луч — только начало;
  • прямая — не располагает начальной и конечной точками.

Взаимное расположение лучей

Если на прямой линии вы поставите точку, то на ней сформируются два таких луча, начало которых находится в одной точке.

На рисунке начало для лучей — общая точка A.

По взаимному расположению лучи делятся на пересекающиеся и непересекающиеся.

Параллельный луч — это фигура, у которой любая точка находится на одинаковом расстоянии от соответствующей точки другого луча. Параллельные лучи не могут пересекаться.

Дополнительные лучи — это фигуры, которые обладают такими признаками, как:

  • имеют совпадающее начало в одной точке;
  • располагаются на одной прямой линии;
  • направляются в разные стороны, то есть угол между ними составляет 180 градусов.

Можно ли сравнить два луча?

Луч — это такая фигура, которую нельзя измерить. Он продолжается без ограничений, поэтому не обладает характеристикой длины.

Так как невозможно измерить несколько лучей, сравнить их вы тоже не сможете.

Луч — альтернативные значения слова

Русский язык достаточно сложен и необычайно многообразен, поэтому многие слова имеют несколько разных значений, а разнообразные сочетания способны радикально менять смысл слов, которые являются их составными частями.

Сможете ли вы сходу ответить на вопрос: «Что такое луч света?». Это словосочетание употребляется нами с детства, но не так легко выразить, что оно означает.

Такая фраза описывает прямую линию, по которой направляется световая энергия. Эта энергия исходит от разных источников:

  • Солнце;
  • звёзды;
  • лампочка.

В быту вы можете услышать словосочетание «луч света в тёмном царстве». Такие слова означают — среди негативных явлений присутствует что-то хорошее. Короткое слово всегда ассоциируется с чем-то светлым, добрым и положительным.

Фраза «луч надежды» указывает, что среди множества нежелательных последствий существует не высокая вероятность благополучного исхода.

Как давно определили скорость света

Еще в XVII веке ученые пытались определить скорость света. Ранее астрономы предполагали, что лучи разносятся в пространстве мгновенно. В этом усомнился Галилео Галилей. Он поставил целью вычислить время прохождения лучом света определенного расстояния, равного восьми километрам. Но его опыты были неудачны. Исследования датского ученого О. Рёмера тоже не увенчались успехом. Он заметил временную разницу в затмениях спутников других планет в зависимости от положения Земли. Когда она находится дальше от другого космического объекта, то лучам света необходимо больше времени для достижения земной поверхности. Вычислить их скорость у него не получилось.

Впервые примерно подсчитать скорость света удалось англичанину Джеймсу Брэдли в XVIII веке. Этот астроном установил ее значение в 301 000 км/с. В прошлом столетии, используя теорию электромагнетизма Максвелла, ученые смогли точно вычислить значение скорости луча. Исследования проводились при использовании новейших лазерных технологий, учитывая коэффициенты их преломления. Рассчитанная скорость света оказалась равной 299 792 километров 458 метров в секунду. Это помогло определить удобную единицу измерения космического пространства.

Источники света

Свет создаётся во многих физических процессах, в которых участвуют заряженные частицы. Наиболее важным является тепловое излучение, имеющее непрерывный спектр с максимумом, положение которого определяется температурой источника. В частности, излучение Солнца близко к тепловому излучению абсолютно чёрного тела, нагретого до примерно 6000 К, причём около 40 % солнечного излучения лежит в видимом диапазоне, а максимум распределения мощности по спектру находится вблизи 550 нм (зелёный цвет). Другие процессы, являющиеся источниками света:

  • переходы в электронных оболочках атомов и молекул с одного уровня на другой (эти процессы дают линейчатый спектр и включают в себя как спонтанное излучение — в газоразрядных лампах, светодиодах и т. п. — так и вынужденное излучение в лазерах);
  • процессы, связанные с ускорением и торможением заряженных частиц (синхротронное излучение, циклотронное излучение, тормозное излучение);
  • черенковское излучение при движении заряженной частицы со скоростью, превышающей фазовую скорость света в данной среде;
  • различные виды люминесценции:
    • сонолюминесценция
    • триболюминесценция
    • хемилюминесценция (в живых организмах она носит название биолюминесценция)
    • электролюминесценция
    • катодолюминесценция
    • флюоресценция и фосфоресценция
    • сцинтилляция

В прикладных науках важна точная характеристика спектра источника света. Особенно важны следующие типы источников:

  • Абсолютно чёрное тело
  • Источник А
  • Источник В
  • Источник С
  • Источник D65

Указанные источники имеют разную цветовую температуру.

Лампы дневного света, выпускаемые промышленностью, испускают излучение с различным спектральным составом, в том числе:

  • Лампы белого света (цветовая температура 3500 К),
  • Лампы холодного белого света (цветовая температура 4300 К)

Видимый свет применение

За годы светотехническая промышленность стремительно развивала электрические и искусственные источники, которые копировали свойства солнечного излучения.

В 1960-х годов ученые придумали термин «полный спектр освещения» для описания источников, испускающих подобие полного естественного освещения, который включал ультрафиолетовый и видимый спектр необходимый для здоровья организма человека, животных и растений.

Искусственное освещение для дома или офиса подразумевает естественное освещение в непрерывном распределении спектральной мощности который представляет мощность источника в зависимости от длины волны с равномерным уровнем лучистой энергии связанный с флуоресцентными и галогенновыми лампами.

Видимый свет — это часть электромагнитного излучения (ЭМ), как радиоволны, инфракрасное излучение, ультрафиолетовое излучение, рентгеновские лучи и микроволны. Как правило, видимый свет определяется как визуально определяемый для большинства человеческих глаз

 диапазон длин волн называется электромагнитным спектром

Спектр, как правило, делится на семь диапазонов в порядке уменьшения длины волны и увеличения энергии и частоты. Общее обозначение представляет радиоволны, микроволны, инфракрасное (ИК), видимый свет, ультрафиолетовое (УФ), рентгеновские лучи и гамма-лучи.

Длина волны видимого света находится в диапазоне электромагнитного спектра между инфракрасным (ИК) и ультрафиолетовым (УФ).

Она имеет частоту от 4 × 1014 до 8 × 1014 циклов в секунду, или герц (Гц) и длина колебаний от 740 нанометров (нм) или 7,4 × 10-5 см до 380 нм или 3,8 × 10-5 см.

Восприятие света глазом

Нормированные спектральные зависимости чувствительности колбочек трёх типов. Пунктиром показана светочувствительность палочек.

Видеть окружающий мир мы можем только потому, что существует свет и человек способен его воспринимать. В свою очередь, восприятие человеком электромагнитного излучения видимого диапазона спектра происходит благодаря тому, что в сетчатке глаза человека располагаются рецепторы, способные реагировать на это излучение.

Сетчатка человеческого глаза имеет два типа светочувствительных клеток: палочки и колбочки. Палочки обладают высокой чувствительностью к свету и функционируют в условиях низкой освещённости, отвечая тем самым за ночное зрение. Однако, спектральная зависимость чувствительности у всех палочек одинакова, поэтому палочки не могут обеспечить способность различать цвета. Соответственно, изображение, получаемое с их помощью, бывает только чёрно-белым.

Колбочки имеют относительно низкую чувствительность к воздействию света и обусловливают механизм дневного зрения, действующий только при высоких уровнях освещённости. В то же время, в отличие от палочек, в сетчатке глаза человека имеется не один, а три типа колбочек, отличающихся друг от друга расположением максимумов их спектральных распределений чувствительности. Вследствие этого колбочки поставляют информацию не только об интенсивности света, но и о его спектральном составе. Благодаря такой информации у человека и возникают цветовые ощущения.

Спектральный состав света однозначно определяет его цвет, воспринимаемый человеком. Обратное утверждение, однако, неверно: один и тот же цвет может быть получен различными способами. В случае монохроматического света ситуация упрощается: соответствие между длиной волны света и его цветом становится взаимнооднозначным. Данные о таком соответствии представлены в таблице.

Понравилась статья? Поделиться с друзьями:
Like children
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: