Характеристика резиновых материалов: виды, свойства, применение

Что такое каучук? История, виды и свойства

В некоторых растениях сок содержит латекс. Изначально это белая жидкость, из которой впоследствии и производится каучук. Материал эластичный, не пропускает воду, а также служит диэлектриком. Таким образом, каучук – это высокоэластичный полимер, который добывают из млечного сока некоторых тропических растений, а также искусственным путем.

Давным-давно индейцы называли каучук «слезами деревьев». Так слово и переводится с языка группы южноамериканских коренных народов. В европейских странах об этом материале ничего не знали вплоть до открытия Америки.

Сбор млечного сока растений, из которого в дальнейшем получают природный каучук

Так называемое каучуковое дерево (общее название нескольких растений) служит источником полимера. Растения встречаются только в экваториальной части в поясе шириной 1500 км. Кстати, в привычных для нас одуванчиках и полыни тоже содержится похожий сок, но его крайне мало и качество каучука очень низкое.

Интересный факт: более 50% всего каучука уходит на производство автомобильных шин.

Материал уникален и способен менять свои свойства в зависимости от окружающей температуры. Например, он может иметь стеклообразное, текучее и высокоэластичное состояние. При температуре от +20 до +30 ℃ также приобретает рыхлую структуру, белую окраску, растворимость в эфире, бензоле и бензине. Самыми важными особенностями каучука являются упругость, мягкость и водонепроницаемость.

Существует два вида каучука:

  • синтетический;
  • природный.

Дело в том, что добывать каучук из деревьев в нужных количествах в современном мире непросто, поэтому ученые научились создавать его искусственно. Разработаны различные синтетические виды на основе изопрена, бутилена, изобутилена и других компонентов. Каждый такой полимер имеет свои уникальные свойства. Разнообразие синтетических материалов достаточно большое.

Что появилось раньше

Еще до того, как Америку открыли европейцы, индейцы, жившие там, пользовались каучуком. Его получали из сока тропической гевеи. Высушенный сок коптили, получая непромокаемый и упругий материал. Он шел на изготовление емкостей для воды, игрушек, предметов культа. Из него делали примитивную обувь и одежду.

В середине XVIII века каучук путешественники привезли в Европу. Однако долго не могли найти способ его применения. За исключением стирающих карандаш ластиков. Считалось, что из-за его высыхания и затвердевания он не имеет перспектив практического применения. В следующем веке появились непромокаемые ткани, сумки и галоши, которые твердели в холодную погоду и становились мягкими в тепле.

Через сотню лет после появления каучука в Старом Свете был придуман способ, позволивший сделать эластичность этого материала устойчивой. Он получил название вулканизации. Его суть в смешивании сырого каучука с серой и дальнейшим разогревом этой смеси. Получившийся продукт стали называть резиной. Она начала широко использоваться в качестве уплотнителя и электроизолятора. В начале ХХ века в связи с ростом потребности в резине была решена проблема производства синтетических каучуков в промышленно развитых странах.

Получение и применение каучуков

Более широкое применение в производстве резин получили синтетические каучуки, отличающиеся разнообразием свойств. Синтетические каучуки получают из спирта, нефти, попутных газов нефтедобычи, природного газа и т.д. (рис. 7).

Рис. 7 Схема получения синтетических каучуков

СКБ – бутадиеновый каучук, чаще идёт на изготовление специальных резин (рис. 8).

Рис. 8 Уплотнители — упругие прокладки трубчатого или иного сечения

СКС – бутадиенстирольный каучук. Каучук СКС – 30, наиболее универсальный и распространённый, идёт на изготовление автомобильных шин, резиновых рукавов и других резиновых изделий (рис. 9). Каучуки СКС отличаются повышенной морозостойкостью (до -77оС).

Рис. 9 Изделия из каучука СКС

СКИ – изопреновый каучук. Промышленностью выпускается каучуки СКИ-3 – для изготовления шин, амортизаторов; СУИ-3Д – для производства электроизоляционных резин; СКИ-3В – для вакуумной техники (рис. 10).

Рис. 10 Вакуумный выключатель-прерыватель (а), электрозащитные перчатки (б)

СКН – бутадиеннитрильный каучук. В зависимости от содержания нитрила акриловой кислоты бутадиеннитрильные каучуки разделяют на марки СКН-18, СКН-26, СКН-40. Они стойки в бензине и нефтяных маслах. На основе СКН производят резины для топленных и масляных шлангов, прокладок и уплотнителей мягких топливных баков (рис. 11).

СКТ – синтетический каучук теплостойкий имеет рабочую температуру от -60 до +250оС, эластичный. На основе этих каучуков производят резины, предназначенные для изоляции электрических кабелей и для герметизирующих и уплотняющих прокладок (рис. 12).

Рис. 11 Масляные шланги и уплотнители топливных баков

Рис. 12 Уплотняющая прокладка и изоляция электрических кабелей

Полимеры будущего

Полимеры и материалы на их основе приобретают все большее значение в различных областях и, как ожидается, будут играть еще большую роль в будущем. Здесь мы рассмотрим перспективы полимеров (по состоянию на начало 2023) на разных временных горизонтах, включая следующие: 5, 10, 20 лет и далее.

Полимеры через 5 лет: достижения в области биоразлагаемости

Одним из ключевых направлений деятельности на следующие 5 лет является биоразлагаемость. Цель состоит в том, чтобы разработать полимеры, которые могут быстрее и эффективнее разрушаться в естественной среде, уменьшая их воздействие на планету. Исследователи изучают использование биоразлагаемых материалов, изготовленных из возобновляемых ресурсов, таких как полимеры на растительной основе, а также новые технологии для улучшения биоразлагаемости традиционных полимеров на нефтяной основе. Эти усилия не только принесут пользу окружающей среде, но и создадут новые возможности для предприятий и отраслей, которые стремятся внедрить более устойчивые методы.

Полимеры через 10 лет: «умные» полимеры и перспективные приложения

Ожидается, что в следующем десятилетии умные полимеры и передовые приложения займут центральное место. Эти материалы будут иметь возможность реагировать на различные раздражители, такие как температура, свет и давление, что позволит им выполнять широкий спектр функций. Например, «умные» полимеры можно использовать при разработке новых медицинских устройств, самовосстанавливающихся материалов и «умной» упаковки. Они также могут найти применение в энергетическом секторе, например, для создания гибких и легких солнечных элементов и эффективных систем хранения энергии.

Полимеры через 20 лет: развитие 3D-печати и настраиваемых полимеров

Заглядывая в будущее, 3D-печать и настраиваемые полимеры должны произвести революцию в том, как мы проектируем, производим и используем полимерные материалы. 3D-печать позволит создавать сложные и замысловатые формы, что позволит разрабатывать новые и инновационные продукты.

С другой стороны, настраиваемые полимеры предоставят производителям возможность адаптировать свойства материалов для удовлетворения конкретных потребностей, что сделает их идеальными для широкого спектра применений. Вместе эти разработки откроют новые возможности для сотрудничества и творчества, позволяя ученым, инженерам и дизайнерам работать вместе над созданием решений, которые не только функциональны, но также устойчивы и безвредны для окружающей среды.

Полимеры через 20 лет и далее: будущее полимеров и человеческой жизни

Будущее полимеров и человеческой жизни безгранично. Исследователи изучают использование полимеров в различных областях, включая биомедицину, исследование космоса и устойчивое производство энергии. Разработка новых полимеров с уникальными свойствами также окажет значительное влияние на то, как мы живем и работаем, и может даже привести к новым прорывам в областях, которые мы пока не можем себе представить.

В заключение следует отметить, что у полимеров захватывающее будущее, и достижения в этой области окажут большое влияние на наш мир в ближайшие годы. Будь то биоразлагаемые материалы, «умные» полимеры, 3D-печать или что-то еще, потенциал для роста и инноваций в этой области огромен, и мы можем ожидать появления поистине революционных разработок в ближайшие годы.

Будущее полимеров

В будущем мир не сможет уйти от полимеров, уверены эксперты. С каждым годом они будут приобретать новые формы. На первый план уже сейчас начинают выходить «зеленые» полимеры. Речь идет о композитах, которые объединяют в себе сильные стороны природных и синтетических полимеров.

«Нужно понимать, что полимеры — это не только что-то твердое. Они могут быть жидкими, прозрачными, цветными, более гибкими, менее гибкими, пластичными. Это и объясняет их широкое применение во всех сферах нашей жизни», — добавила Алина Мусина.

Тем временем ученые и производители продолжают искать способы снизить экологический след от некоторых видов полимеров. Одни компании уменьшают количество первичного пластика и делают ставку на вторичную переработку, а другие разрабатывают альтернативные варианты.

Зеленая экономика

Пакеты, флаконы и гели: что такое биоразлагаемая продукция

Так, английская компания Polythene UK представила несколько видов упаковок на растительной основе. Сейчас предприятие производит компостируемый полиэтилен на основе крахмала. Упаковку из такого материала не нужно перерабатывать — процесс разложения займет не более трех лет. Со временем они распадаются на природные элементы: биомассу, воду, углекислый газ, метан. Еще одна альтернатива — полиэтилен из отходов сахарного тростника. Его можно использовать для крышек поддонов.

Природные и синтетические полимеры

Природные

Природные полимеры встречаются повсюду. Они представляют собой макромолекулы, созданные самой природой без участия человека. Приведем ряд примеров.

  • Полисахариды. В эту большую группу природных полимеров относят крахмал и целлюлозу. Они отличаются друг от друга своими свойствами. Так, крахмал легко растворяется в воде и его можно употреблять в пищу. Целлюлоза не растворяется в воде. Ее обычно используют при производстве бумаги и волокон для ткани.
  • Белки (протеины) — природный полимер, который состоит из аминокислот. Именно белок отвечает за рост, строение и развитие живого организма.
  • Нуклеиновые кислоты. Нуклеиновые (ДНК) и рибонуклеиновые кислоты (РНК) содержат всю информацию о человека: от болезней до талантов.
  • Природный каучук. Это пластичный и вязкий полимер, который содержится в соке каучуконосных растений.

Зеленая экономика

Ученые нашли способ выработки ванилина из пластика

Синтетические

До XIX века промышленности хватало природных полимеров. Но со временем из-за нехватки ресурсов появилась потребность и в других материалах. Так, в 1909 году американский химик Лео Бакеланд пытался найти замену природному шеллаку (смола). Но в итоге опыты помогли ему создать материал под названием бакелит. Он получился в результате реакции фенола и формальдегида под давлением при высоких температурах. Именно с этого открытия началась эра синтетических материалов. В химических лабораториях началась разработка новых видов полимеров.

Обложка TIME за 22 сентября 1924 года с фотографией Бакеланда

(Фото: wikipedia.org)

  • Перед Второй мировой войной в нескольких странах (Англия, Германия и США) стартовало производство синтетического каучука. В тоже время началась разработка полистирола, поливинилхлорида, полиметилметакрилата.
  • В 1950-е годы ученые создали полиэфирное волокно и началось производство тканей на его основе. Тогда же появились полипропилен и полиэтилен низкого давления. Затем в массовое производство запустили полиуретаны.
  • В 1960–1970-х годах удалось синтезировать полиамиды.

Натуральный каучук

99% такого материала получают из дерева гевеи. Для этого на коре делают надрезы в виде буквы V. В нижней части перпендикулярно поверхности устанавливается желобок, по которому постепенно стекает сок в миску, установленную ниже. Вытекание латекса (млечного сока гевеи) длится в течение полутора часов. 

Содержание каучука в нём может быть различным. Это зависит от:

того, какой возраст у дерева, с которого собирают сок;

важное значение имеет состав почвы, в которой растёт гевея;

времени года, когда происходит сбор;

того, какая была в это время погода;

времени и качества сделанных надрезов;

других особенностей сбора латекса.

Для того, чтобы натуральный каучук можно было использовать, он должен пройти следующую обработку:

  1. Сначала производится отжим. Он необходим для того, чтобы удалить из латекса излишнюю влагу.

  2. После этого полученные полосы обматывают вокруг палки и просушивают над костром.

  3. Полосы раскладывают в один слой и оставляют под лучами солнца.

  4. Теперь осталось подержать над дымом.

Подготовленный таким образом каучук может служить сырьем для производства резины.

Сок добывают из тех деревьев, которым уже исполнилось 12 лет. В год может быть получено от 3 до 5,5 кг латекса.

Состав латексного раствора:

  • до 70% воды;

  • содержание каучука в различных случаях колеблется от 25% до 70%;

  • содержание других химических веществ, включая протеин, не превышает 1-2%.

Каучук. Резина

натуральный латекс и каучук из него Что такое каучук

Кроме сложных веществ наподобие полиэтиленов, представляющих из себя высокомолекулярные полимеры, существует класс химических веществ, который образован сопряжёнными диенами.

После процесса полимеризации диенов образуются новые химические вещества, имеющие высокомолекулярную структуру, называемые каучуками.

Каучук был уже известен в конце 15 веке в северной Америке. Именно индейцы в то время использовали его для изготовления обуви, небьющихся вещей и посуды. А получали тогда его из сока растения гевеи, который называли – «слёзы дерева».

Что касается европейцев, то о каучуке узнали впервые только в момент открытия Америки. Именно Кристофор Колумб первым узнал о его свойствах и получении. В Европе каучук долгое время не мог найти себе применение.

В 1823 г в первые было предложено использование этого материала для изготовления водонепроницаемых плащей и одежды. Каучуком и органическим растворителем пропитывали ткань, таким образом, ткань приобретала водостойкие свойства.

Но, конечно же, был замечен и недостаток, который заключался в том, что ткань, пропитанная каучуком, прилипала в жаркую погоду к коже, а при морозе – растрескивалась.

Понятие и химическая природа

Также к бутадиеновым каучукам (БК) относят высокомолекулярные соединения, имеющие следующие наименования, торговые марки и аббревиатуры: акрилодивиниловые каучуки, полибутадиены, СКД, СКДЛ и прочие обозначения полимера 1,3-бутадиена. По химической природе такие каучуки являются именно полимерами, мономером которых служит бутадиен.

Самые распространенные и наиболее используемые бутадиеновые каучуки стерео-регулярного строения макромолекул, они синтезируются в растворе по каталитическому механизму с участием катализаторов Циглера-Натта, также возможно применение литий-органических катализаторов.

Знаменитый каучук СКВ, который был впервые в мире получен в 1932 году советским химиком Лебедевым производился из этилового спирта по технологии основанном на использовании металлического натрия в качестве катализатора. В современной промышленности производство по этому методу уступило место более современным и эффективным технологиям.

Средняя молекулярная масса современных бутадиеновых каучуков колеблется от 40 до 250 тысяч атомных единиц. 

Каучук синтетический

Каучуками называют натуральные или синтетические полимеры, обладающие высокими эластичными свойствами в процессе эксплуатации. Каучуки могут растягиваться до размеров, многократно превышающих их первоначальную длину.

Каучуки эластичны и водонепроницаемы. Они не проводят электрический ток, что позволяет применять их в качестве изолирующих материалов. Они не растворяются в воде, хорошо растворимы в бензине, бензоле, эфире и других летучих жидкостях. Из них получают резины и эбониты.

История открытия каучуков

Название «каучук» произошло от слова «каучу» (кау- дерево, учу – течь). Так индейцы называли сок гевеи. Это дерево, растущее на берегах Амазонки. Белый сок этого дерева темнел и становился твёрдым на воздухе. Индейцы делали из него обувь, непромокаемые ткани, сосуды для воды и другие предметы обихода.

Но изделия из этой ткани твердели и трескались на холоде, а летом превращалась в липкую смесь с неприятным запахом.

В 1839 г. американец Чарльз Нельсон Гудьир, добавив в каучук немного серы и, нагрев эту смесь, изобрёл новый материал с повышенной прочностью, эластичностью, устойчивый к нагреванию и к холоду. Именно этот материал называют сейчас резиной, а процесс его получения – вулканизацией. С этого времени изделия из резины завоевали весь мир.

Синтетический каучук

С изобретением автомобильных шин потребность в резине выросла настолько, что природного сырья стало не хватать для производства каучука. И вопросом получения синтетического каучука занялись учёные.

В 1879 г. французский химик Г.Бушарда, обработав вещество изопрен соляной кислотой, получил каучукоподобное вещество. А в 1901 г. русский химик  И. Кондаков создал эластичный полимер из диметилбутадиена. В 1910 г. впервые был получен синтетический полибутадиеновый (дивиниловый) каучук по методу русского учёного-химика Сергея Васильевича Лебедева. Началось промышленное производство каучука.

Типы синтетических каучуков

Современная промышленность производит синтетические каучуки.  Кроме бутадиенового каучука, полученного С.В. Лебедевым, выпускаются и другие виды синтетических каучуков, по своим свойствам превосходящие натуральные каучуки.

Синтетические каучуки получают полимеризацией. В процессе полимеризации макромолекула полимера образуется путём присоединения молекул мономеров. Абсолютно все каучуки имеют большую длину молекул полимеров.

Изопреновый каучук получают полимеризацией изопрена.

nСН2=С(СН3)-СН=СН2 → (-СН2-С(СН3)=СН-СН2-)n

Натуральный каучук также является изопреновым каучуком. Поэтому синтетический изопреновый каучук, как и натуральный,  обладает высокой эластичностью и прочностью. Применяют его в производстве шин, обуви, конвейерных лент, медицинских изделий.

Бутадиеновый каучук получают  полимеризацией бутадиена. Этот каучук обладают высокой износоустойчивостью. Он широко используется при изготовлении шин.

Бутан-стирольный каучук получается в результате сополимеризации (полимеризации с участием двух мономеров) бутадиена 1,3 и стирола. Применяется для производства шин, резиновой обуви  и других резиновых изделий высокого качества.

Бутадиен-нитрильный каучук. Этот каучук получают полимеризацией бутадиена с акрилонитрилом. Он обладает высокой масло- и бензостойкостью. Применяется в производстве сальников.

Винилпиридиновый каучук создаётся полимеризацией винилпиридина с диеновыми углеводородами. Он имеет отличную склеиваемость. И резины из него получаются морозоустойчивые, маслостойкие и бензостойкие.

Фторсодержащие каучуки — результат полимеризации фторорганичеких соединений, в состав которых входит хотя бы один атом фтора, непосредственно соединённый с углеродом. Эти каучуки характеризуются повышенной термостойкостью. Поэтому их применяют для изготовления герметиков и уплотнителей, работающих при температурах выше 200оС.

Синтетические каучуки получили широкое распространение во многих отраслях современной промышленности. Каучуки являются основой резиновых смесей, из которых вулканизацией получают резину. А из резины выпускают несколько десятков тысяч разнообразных изделий, применяемых  в самых различных отраслях промышленности, транспорта, сельского хозяйства, а также в быту.

Технология формообразования деталей из резины

Из сырой резины методами прессования и литья под давлением изготавливают детали требуемой формы и размеров. Каждый метод имеет только ему присущие технологические возможности и применяется для изготовления определённого вида деталей.

Прессование. Детали из сырой резины формуют в специальных прессформах на гидравлических прессах под давлением 5 – 10 МПа (рис. 13).

Рис. 13 Гидравлический пресс и готовые изделия

В том случае, если прессование проходило в холодном состоянии, отформованное изделие затем подвергают вулканизации. При горячем прессовании одновременно с формовкой протекает вулканизация. Методом прессования изготавливают уплотнительные кольца, муфты, клиновые ремни.

Литьё под давлением. При этом более прогрессивном методе форму заполняют предварительно разогретой пластичной сырой резиновой смесью под давлением 30 – 150 МПа. Резиновая смесь приобретает форму, соответствующую рабочей полости пресс-формы. Прочность резиновых изделий увеличивается при армировании их стенок проволокой, сеткой, капроновой или стеклянной нитью (рис. 14).

Рис. 14 Резиновые изделия с увеличенной прочностью

Сложные изделия – автопокрышки, гибкие бронированные шланги и рукава – получают последовательно. Сначала наматывают на полый металлический стержень слои резины, затем изолирующие и армирующие материалы (рис. 15).

Рис. 15 Бронированные шланги и устройство автопокрышки

Сборку этих изделий выполняют на специальных дорновых станках (рис. 16).

Рис. 16 Один из разновидностей дорновых станков литья под давлением резины

Вулканизация. В результате вулканизации – завершающей операции технологического процесса – формируются физико-механические свойства резины. Горячую вулканизацию проводят в котлах, вулканизационных прессах, пресс-автоматах (рис. 17), машинах и вулканизационных аппаратах непрерывного действия под давлением при строгом температурном режиме в пределах 130 – 150оС. Вулканизационной средой могут быть горячий воздух, водяной пар, горячая вода, расплав соли. Основной параметр вулканизации – время – определяется составом сырой резины, температурой вулканизации, формой изделий, природой вулканизационной среды и способом нагрева.

Вулканизацию можно проводить и при комнатной температуре (рис. 18). в этом случае сера отсутствует в составе сырой резины, а изделие обрабатывают в растворе или парах дихлорида серы или в атмосфере сернистого газа.

Рис. 17 Пресс-автомат и котёл для вулканизации резины

Рис. 18 Вулканизация (ремонт) шин при комнатной температуре

В результате вулканизации увеличиваются прочность и упругость резины, сопротвление старению, действию различных органических растворителей, изменяются электроизоляционные свойства.

На фото 1 и 2 показано сборочное оборудование Нижнекамского завода и цех вулканизации шин ЦМК (цельнометаллокордных покрышек).

Фото 1

Фото 2

Главное преимущество цельнометаллокордных покрышек — возможность их двукратного восстановления путем наварки протектора. Это позволяет в конечном итоге удвоить срок их службы и довести до 500 тыс. км пробега. Помимо ресурсосбережения достигается значительный экологический эффект — вдобавок к уменьшению выхлопных газов сокращаются и отходы в виде изношенных покрышек.

Промышленное применение

Самое массовое использование природного каучука на практике — это изготовление резины. В основе этого процесса лежит реакция вулканизации, разработанная еще в XIX веке. Для получения резины, в сырье добавляют различные компоненты, способствующие образования длинномерных молекул, соединенных между собой поперечными связями. Такое строение и обеспечивает резине возможность сжатия и растяжения практически при любой температуре. Продукт вулканизации – резина предназначается для применения различных отраслях. Е применяют для производства покрышек и камер для любой техники, работающей на колесном ходу. Кроме того, каучук служит основой для производства различных уплотнений применяемых для работ по тепло-,гидро- и звукоизоляции. Без него не может обойтись и медицина, в частности при производстве перчаток, презервативов. Кроме того, множество изделий из него применяют в медицинских приборах и оборудовании. Каучук применяют и в такой отрасли как ракетная. Его используют как основу для производства твердого топлива для ракет. В частности он используется как топливо, а наполнителем выступает порошок селитры, а окислителем выступает перхлорат аммония.

Свойства полимеров

  1. Ударопрочность. По способности выдерживать механическую нагрузку полимеры ничем не уступают некоторым металлам. Поэтому полимеры используют при создании автомобильных бамперов, защитных чехлов и не только.
  2. Пластичность и эластичность. Таким свойством обладают, например, природные и синтетические каучуки. Именно поэтому их используют при создании автомобильных шин, шланги, оболочки проводов и кабелей, подошвы для обуви, воздушные шарики и не только.
  3. Отражательная способность. Благодаря этому свойству из полимеров создают специальные светоотражающие пленки. Обычно их используют для индикации предметов в темное время суток. К примеру, светоотражающие материалы применяют при организации дорожного движения, создании билбордов и баннеров.
  4. Электроизоляция. Полимеры — диэлектрики (не пропускают через себя электрический ток). Их можно использовать не только в качестве изоляционных материалов в электрооборудовании, но и при изготовлении рукояток инструмента для работы с токопроводящими деталями.

Разница между натуральным и вулканизированным каучуком

Основное различие между натуральным каучуком и вулканизированным каучуком состоит в том, что натуральный каучук является термопластичным, тогда как вулканизированный каучук является термореактивным.

Натуральный каучук — это каучуковый материал, на основе латекса, который получают из каучуковых деревьев. Необработанный латекс не так полезен, поскольку не обладает нужными свойствами. Чтобы улучшить его свойства, каучук вулканизируют, используя серу или другой подходящий метод. После вулканизации этот каучук называется «резина».

  1. Обзор и основные отличия
  2. Что такое натуральный каучук
  3. Что такое вулканизированный каучук
  4. В чем разница между натуральным и вулканизированным каучуком
  5. Заключение

Что такое натуральный каучук?

Натуральный каучук — это латекс из каучуковых деревьев, который состоит из смеси полимеров. Сырой латекс липкий и представляет собой млечный сок из коллоидных каучуковых частиц, который образуется в надрезах на коре каучуконосных деревьев (бразильская гевея).

Натуральный каучуковый латекс имеет цис-1,4-полиизопреновый полимер. Молекулярная масса этого полимера составляет от 100000 до 1000000 дальтон.

 Как правило, 5% сухой массы каучукового латекса составляют другие органические и неорганические материалы, эти органические материалы могут включать белки, жирные кислоты, смолы и т.д., в то время как неорганические материалы включают соли.

 Однако некоторые другие природные источники каучука содержат транс-1,4-полиизопрен, который является структурным изомером цис-1,4-полиизопрена.

Сбор латексного сока

По своим свойствам натуральный каучук является эластомером и термопластичным материалом. Кроме того, этот каучук обладает уникальными химическими и физическими свойствами. Некоторые из этих свойств следующие:

Что такое вулканизированный каучук?

Вулканизированный каучук — это материал, который образуется после вулканизации натурального каучука.

 Вулканизация проводится для улучшения свойств натурального каучука, таким образом, он приобретает более необходимые свойства (имеющие множество применений).

 Вулканизация — это процесс образования поперечных связей между полимерными цепями. Таким образом, это процесс затвердевания каучукового материала.

Рабочий, помещающий шину в форму перед вулканизацией

Традиционно обработка натурального каучука серой называется вулканизацией. В настоящее время существуют разные методы вулканизации.

 Можно сказать, вулканизация как процесс отверждения эластомеров. Это потому, что отверждение относится к упрочнению материалов путем образования поперечных связей.

 Таким образом, процесс вулканизации помогает увеличить жесткость и долговечность. Как правило, вулканизация необратима.

Химикаты, используемые для вулканизации  различными методами, следующие:

  • Сера
  • Перекись водорода
  • Оксиды металлов
  • Ацетоксисилан
  • Уретановые сшиватели

Хотя использование серы является наиболее распространенным методом, это медленный процесс и требует большого количества серы. Более того, он требует высоких температур и длительного нагрева. Основными факторами, которые необходимо учитывать при вулканизации, являются время, прошедшее до ее начала (время обжига), скорость вулканизации и степень вулканизации.

В чем разница между натуральным и вулканизированным каучуком?

Натуральный каучук — это латекс каучукового дерева со смесью полимеров, в то время как вулканизированный каучук — это материал, который образуется после вулканизации натурального каучука. Основное различие между натуральным и вулканизированным каучуком заключается в их механических свойствах.

 То есть, натуральный каучук является термопластичным, тогда как вулканизированный каучук является термореактивным. Кроме того, натуральный каучук образуется в виде млечного коллоида и производится в виде латекса каучуковым деревом в его коре.

Вулканизированный каучук представляет собой упрочненный каучук, который содержит поперечные связи между полимерными цепями и производится путем вулканизации.

Натуральный каучук является природным материалом, в то время как вулканизированный каучук является материалом, который образуется после вулканизации натурального каучука. Основное различие между натуральным каучуком и вулканизированным каучуком заключается в том, что натуральный каучук является термопластичным, тогда как вулканизированный каучук является термореактивным.

Применение полимеров

Полимеры в нефтегазовой промышленности

Нефть и газ — это не просто источник топлива для большинства видов транспорта, но и сырье для химического производства. Именно из нефтепродуктов создают большинство видов полимеров.

Также полученные полимеры используются и в самом процессе добычи. Так, для увеличения производительности и очистки трубопроводов используют полиакриламид (ПАА) и его производные. Этот технический водорастворимый полимер помогает увеличивать максимальную пропускную способность нефтепровода и улучшает качество перекачиваемой нефти. Его же используют при ремонтных работах в скважинах.

В медицине

Медицинская сфера уже давно и активно использует изделия из полимеров. Среди них: штифты, одноразовые шприцы, инструменты для хирургии, контейнеры для плазмы и крови, контактные линзы, лабораторная посуда, хирургические нити, бахилы, протезы, искусственные органы и даже полимерные наногели для доставки лекарств.

Изучение возможностей полимеров на этом не останавливается. Так, студенты и профессоры Национального исследовательского технологического университета «МИСиС» в 2017 году решили усовершенствовать полиэтилен, чтобы использовать его в качестве замены костей, суставов и мышц. По мнению ученых, если доработать идею, то срок годности импланта из этого материала составит не менее 15 лет.

Экономика инноваций

Инновации против травм: новейшие достижения спортивной медицины

В автомобилестроении

Предприятия автомобильной промышленности используют не менее 100 видов полимерных материалов при производстве транспортных средств. Так, колпаки колес, приборные панели и некоторые части двигателя сделаны из полипропилена. Сиденья выполнены из полиуретана, коврики — из полиэтилена. В рычагах включения привода, шестернях, бензобаке, аккумуляторе, корпусах предохранителей есть полиамид. Проводку делают из поливинилхлорида (ПВХ). Этот термопластичный полимер винилхлорида знаком жителям всего мира. Из него обычно изготавливаются линолеум и натяжные потолки.

В строительстве

Не отстает от других и строительная сфера. Из полимеров создают электротехнические конструкции, кабели, провода, трубы, изоляционные эмали, лаки, пленки, сетки, ограждения и защитные покрытия. Более того, полимеры добавляются в состав железобетона и бетона. Это позволяет улучшить качество строительных материалов.

В пищевой промышленности

Полимеры в пищевой промышленности обязаны соответствовать определенным санитарно-гигиеническим требованиям. Они не должны влиять на органолептические свойства продуктов (вкус, цвет, запах), а также содержать токсичные компоненты. Полимеры используются не только в производстве оборудования для пищевой промышленности, но и в упаковочных материалах.

  • Оборудование. К примеру, в консервной и молочной промышленности звенья транспортерных лент изготовлены из полиамидов или полиэтилена высокой плотности. А для того, чтобы сырье и полуфабрикаты не прилипали к поверхности оборудования, на металлические конструкции наносят специальные полимерные покрытия.
  • Полимерная упаковка. Она позволяет сохранять миллионы тонн сельскохозяйственной продукции и продовольствия в магазинах. Так, одноразовые многослойные пленки сохраняют продукты на 20% дольше без добавления консервантов.
Понравилась статья? Поделиться с друзьями:
Like children
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: